首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
一、利用三角函数的性质求最值1.若函数形如y=asinx+b(或y=acosx+b),可直接利用函数的下列性质来求解:|sinx|≤1,|cosx|≤1.例1求函数y=sin(x-π6)cosx的最值.解析y=sin(x-π6)cosx=12[sin(2x-π6)-sinπ6]=12sin(2x-π6)-41.当sin(2x-π6)=1时,ymax=21-14=41;当sin(2x-π6)=-1时,ymin=-21-41=-43.2.若函数形如y=acssiinnxx++db(或y=acccoossxx++db),先逆向解得sinx(或cosx)的表达式,再结合性质|sinx|≤1(或|cosx|≤1)来求解.例2求函数y=8cos2x+83cos2x+1的最值.解析由原式逆向解得cos2x=38y--y8,由0≤cos2x≤1,得0≤8-y3y-8≤1,解…  相似文献   

2.
|sinx|≤1、|cosx|≤1(x∈R),是三角函数中广泛应用的重要性质,恰当运用可使解题过程简捷流畅;反之,忽视正、余弦函数的有界性,是解题过程中出现错误的常见原因.下面结合实例介绍它的解题功能.一、求角【例1】已知6sin3β-cos22α=6,求α、β.解:原方程变形为6(sin3β-1)=cos22α,则有6(sin3β-1)≥0,即sin3β≥1因为|sin3β|≤1,所以sin3β=1,3β=2kπ 2π,即β=23kπ 6π(k∈Z),此时,cos2α=0,2α=kπ 2π,即α=12kπ 4π(k∈Z).评注:等式中含有两个未知数,需从正弦函数的有界性中挖掘隐含条件,寻找突破口.二、求最值【例2】求函…  相似文献   

3.
正弦函数y=Asin(ωx φ)是三角函数的重要内容,历年来都是高考命题的热点.现结合去年全国各地高考试题,根据考查正弦函数的不同内容,进行分类,并探讨其各自不同解法.1.确定函数最小正周期正弦函数y=Asin(ωx φ)的最小正周期为T=2π|ω|.【例1】已知函数y=12sinx πA(A>0)的最小正周期为3π,则A=.解:∵y=12sinx πA=12sin(1Ax πA)(A>0)∴其最小正周期为T=2π1A=2Aπ.则2Aπ=3π故A=32.【例2】函数f(x)=cos2x-23sinxcosx的最小正周期是.解:∵f(x)=cos2x-23sinxcosx=cos2x-3sin2x=-2sin(2x-π6)∴其最小正周期为T=2π2=π.2.求函数…  相似文献   

4.
1 .利用配方法化成只含有一个的三角函数【例 1】 求函数y =sin6 x +cos6 x的最值 .解 :y =sin6 x +cos6 x=(sin2 x +cos2 x) (sin4 x -sin2 xcos2 x +cos4 x)=(sin2 x+cos2 x) 2 -3sin2 xcos2 x=1-3sin2 xcos2 x =1-34 sin2 2x=58+ 38cos4x∴当x=kπ2 (k∈z)时 ,y取最大值为 1.当x=kπ2 + π4(k∈z)时 ,y取最小值 14∴ymax =1,ymin =142 .利用函数y =x+ ax(a >0 )的单调性【例 2】 求函数y =sin2 x + 3sin2 x(x≠kπ ,k∈z)的值域 .解 :设sin2 x =t(0 相似文献   

5.
如果xR,那么|sinx|≤1,|cosx|≤1,这是三角函数中一个应用广泛的重要性质,恰当运用可以使解题过程简捷流畅;反之,忽视正、余弦函数的有界性这一隐含条件,则使同学们在解题过程中经常出现错误.下面结合实例介绍它的解题功能.一、求角度例1已知6sin3β-cos22α=6,求α,β.解原方程变形为6(sin3β-1)=cos22α,则有6×(sin3β-1)≥0,即sin3β≥1.∵|sin3β|≤1,∴sin3β=1,3β=2kπ+π2,即β=23kπ+π6(kZ).此时cos2α=0,2α=kπ+π2,即α=12kπ+π4(kZ).评注等式中含有两个未知数,如果不从正弦函数的有界性中挖掘出隐含条件寻找…  相似文献   

6.
一、考查函数的奇偶性对于函数f(x)=Asin(ωx+φ)(φ≠0),当φ=kπ(k∈z)时,函数f(x)为奇函数;当φ=kπ+π/2(k∈z)时,函数f(x)为偶函数;否则函数f(x)既不是奇函数也不是偶函数.例1函数y=sin(x+φ)(0≤φ≤π)是R上的偶函数,则φ=  相似文献   

7.
2013年全国新课标Ⅰ卷理科数学15题为一道考查三角函数性质的填空题,题目结构特殊,内涵丰富,充分体现解法的开放性和多样性,是一道展示新课改理念,考查学生创新精神和培养探索能力的好题.例设当x=θ时,函数f(x)=sin x-2cos x取得最大值,则cosθ=.方法1(收缩变换)f(x)=sin x-2cos x=槡5sin(x-φ)(其中"φ"是使得sinφ=2槡5,cosφ=1槡5成立的锐角),因为θ使函数f(x)取得最大值,所以θ-φ=2kπ+π2,即"θ-φ"的终边在y轴的非负半轴上,则θ=2kπ+π2+φ,所以cosθ=cos(2kπ+π2+φ)=-sinφ=-2槡55.方法1用到三角函数中的辅助角公式,将解析式由同角异名变形为同名同角.  相似文献   

8.
<正>三角函数一直以来都是高考的重点,而正弦函数y=Asin(ωx+φ)或余弦函数y=Acos(ωx+φ)是三角函数中较为常见的形式。正弦函数的单调性主要可分以下两种情况来讨论:(1)函数y=Asin(ωx+φ)(A>0,ω>0)的单调区间的确定,基本思想是把(ωx+φ)看作一个整体。比如:由2kπ-π2≤ωx+φ≤2kπ+π2(k∈Z)解出x的范围,所得区间即为增区间;由2kπ+π2≤ωx+φ≤2kπ+3π2  相似文献   

9.
在直角坐标系xoy中,各象限的角平分线连同轴、y轴共八条射线,它们把直角坐标系分成八个区域,在各射线上标上相应的sinα+cosα的值,就可以很方便地判断出α的范围。如上图建立坐标系,设sinα+cosα=x,且α∈〔02π〕,A(1,1).〔结论1〕若1相似文献   

10.
一、利用公式求周期 (1)函数y=2sin(x/2+π/3)的最小正周期T=_____; (2)已知)y=an(πx/4+π/3)的最小正周期T=_____; (3)函数f(x)=-sin2x的最小正周期为___; (4)y=sin2xcos2x的最小正周期是____; (5)函数y=sinx-cosx懿的最小正周期是____; (6)甬数f(x)=cos2x-2√3 sinxcosx+1的最小正周期是____;  相似文献   

11.
问题:求函数y=sin x cos x sin x cos x(x∈R)的最大值.解法1:y=sin x cos x sin x cosx2sin()1sin2=x π4 2x.当x π4=2kπ π2,即x=2kπ π4(k∈Z)时,2sin(x π/4)取得最大值2;当2x=2kπ π2,即x=kπ π4(k∈Z)时,sin2x/2取得最大值1/2;故当x=2kπ π/4(k∈Z)时,2sin(x π/4)  相似文献   

12.
题目右图是函数y=Asin(ωx φ)(A>0,ω>0,|φ|<π)的图象.由图中条件,写出该函数的解析式.错解:由图知A=5.由2T=52π-π=32π,得T=3π.∴ω=2Tπ=32.∴y=5sin32x φ,将(π,0)代入该式得5sin23π φ=0,解得23π φ=kπ,φ=kπ-23π(k∈Z).由|φ|<π,得φ=-23π或φ=3π.∴y=5sin  相似文献   

13.
对于形如y=asinx+bcosx的三角式,可变形如下:y=asinx+bcosx=a2+b2(sinx·a22+cosx·b a2+b2).由于上式中的aa2+b2与ba2+b2的平方和为1,故可记aa2+b2=cosθ,ba2+b2=sinθ,则y=a2+b2(sinxcosθ+cosxsinθ)=a2+b2sin(x+θ).由此我们得到结论:asinx+bcosx=a2+b2sin(x+θ),()其中θ由aa2+b2=cosθ,ba2+b2=sinθ来确定.通常称式子()为辅助角公式.它可以将多个三角式的函数问题,最终化为y=Asin(ωx+φ)+k的形式.下面结合近年高考三角题,就辅助角公式的应用,举例分类简析.一、求周期例1(2006年上海卷选)求函数y=2cos(x+π4)cos(x-π4)+3sin2x的最小…  相似文献   

14.
我们知道,三角函数是周期函数.正弦函数的周期是2π,正切函数的周期是π.函数y=Asin(ωx+φ)(其中A>0,ω>0,x∈R)的周期是2πω,函数y=Atan(ωx+φ),x≠kπω+π2ω-φω(其中A>0,ω>0,k∈Z)的周期是πω.余弦函数与余切函数有类似的结论.这些函数的周期与等差数列有何关系呢?性质1一条平行于x轴的直线y=m(m为常数)与函数y=Asin(ωx+φ),x∈R(A>0,ω>0)的图象相交,则(1)如果直线y=m(m为常数)交于函数图象的最高(或最低)点,则n个周期内有n个或n+1个交点,任意区间内的交点(不少于3个)的横坐标顺次构成等差数列,等差数列的公差就是函数周期…  相似文献   

15.
三角函数的最值问题,是一个比较复杂的问题,涉及范围广,方法典型独特,解法多种多样,又有很独特的技巧性,是三角函数的重点和难点内容之一.现把在教学中常见的几种类型及解法归纳如下,供参考.1.对于形如y=asinx+b或y=acosx+b(a≠0)的三角函数最值问题,可从中解出sinx或cosx,再利用正弦(或余弦)函数的有界性(|sinx|≤1或|cosx|≤1),便可求出原函数的最小值为b-|a|,最大值为b+|a|.【例1】求函数y=sin(x-π4)·cosx的最小值和最大值.解:∵y=12sin(2x-π4)+sin(-π4)=12sin(2x-π4)-24,∴ymin=-24-12=-2+24,ymax=-24+12=2-24.2.对于形如y=asinωx…  相似文献   

16.
【题】已知ccooss42βα ssiinn42βα=1,求证:ccooss42αβ ssiinn24αβ=1.法1(三角换元)∵ccooss2βα2 ssiinn2βα2=1,∴可设ccooss2βα=sinφ,ssiinn2βα=cosφ,则sinφcosβ cosφsinβ=cos2α sin2α=1,∴sin(φ β)=1,∴φ β=2π 2kπ,k∈Z,∴sinφ=sin2π-β 2kπ=cosβ,同理,cosφ=sinβ,∴cos2α=cos2β,sin2α=sin2β,∴ccooss42αβ ssiinn24αβ=cos2β sin2β=1.法2(巧构直线与圆相切模型)由已知Accooss2βα,ssiinn2βα,B(cosβ,sinβ)都在单位圆x2 y2=1上,圆x2 y2=1过点B的切线方程l是cosβx sinβy=1,A点也满足此…  相似文献   

17.
一、对于含有代数式a2-x2√的函数或方程,可设x=acosα(0≤α≤π)或x=asinα(-π2≤α≤π2).例1已知x1-y2√+y1-x2√=1,求u=x+y的取值范围.解由题意可知0≤x≤1,0≤y≤1,不妨设x=cosα,y=cosβ(0≤α≤π2,0≤β≤π2),代入已知条件中得cosα1-cos2β√+cosβ1-cos2α√=1,即sin(α+β)=1.∵0≤α≤π2,0≤β≤π2,0≤α+β≤π,∴α+β=π2,β=π2-α,∴u=x+y=cosα+cosβ=cosα+cos(π2-α)=cosα+sinα=2√sin(α+π4).∵π4≤α+π4≤34π,2√2≤sin(α+π4)≤1,即1≤2√sin(α+π4)≤2√,∴u=x+y的取值范围是犤1,2√犦.二、对于含有…  相似文献   

18.
由于三角函数y=Asin(ωx+φ)是由正弦函数y=sinu和一次函数u=ωx+φ复合而成的,而正弦函数y=sinu的对称轴是u=kπ+π/2(k∈Z),它的对称轴总是经过图像的最高点或者最低点.所以解决函数y=Asin(ωx+φ)的对称轴问题应从正弦函数的对称轴方程或函数关于直线对称的性质着手寻找解题思路.  相似文献   

19.
一、求函数解析式时忽视作图法而致错例1函数y=3sin(ωx φ)(ω>0,φ[0,2π))的图象如图所示,试求函数y=3sin(ωx φ)的表达式.错解:由图象知,周期T=2!56π-π3"=π,所以ω=2Tπ=2,即y=3sin(2x φ),而当x=π3,y=0,即0=3sin(2×π3 φ),得23π φ=kπ(k Z),取k=0时,φ=-23π(不合题意);取k=1时,φ=π3;取k=2时,φ=43π,故所求的函数表达式为y=3sin(2x π3)或y=3sin(2x 43π).剖析:在利用“五点作图法”画函数图象时,图象中五个关键点的横坐标自左到右分别是由ωx φ取0、π2、π、32π、2π解得的.三个函数值为零的点自左到右对应的ωx φ…  相似文献   

20.
一、求有关角例1如图1,它是函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<π/2)的一段图象,试求它的一个解析式.解由图象易见它的振幅A=2.又由周期T=2π/ω=2(5π/4-π/2)=3π/2,得ω=4/3.此时已得到y=2sin(4/3x+φ)(*).以下是求初相角φ的几种不同方法.方法1(直接代点法)图象过点(π/2,0),可直接把这点坐标代入式子(*)中,有sin(2π/3+φ)=0.但注意到点(π/2,0)是在图象递减的那段上,故有2π/3+φ=2kπ+π(k∈Z).又题目中要求|φ|<π/2,故上式可取k=0,得  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号