首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一、将四边形问题转化为平行四边形问题例 1.已知 :四边形 ABCD中 ,AB=DC,AC=BD,且 AD≠BC。求证 :四边形 ABCD是等腰梯形。分析 :欲证此四边形为等腰梯形 ,可由定义来证明。从已知条件可看出 ,只要证明AD∥ BC即可。由此联想到构造平行四边形即可证得。证明 :过点 D作 DE∥ A B交BC于点 E,则∠ ABC=∠ DEC。∵ AB=DC,AC=DB,BC=CB,∴△ ABC≌△ DCB。∴∠ ABC=∠ DCB,∠ DEC=∠ DCB。∴ AB=DC=DE,∵ AB∥ DE,∴四边形 ABED是平行四边形 ,∴ AD∥ BC。又∵ AD≠ BC,∴四边形 ABCD是等腰梯形。二、将四…  相似文献   

2.
有关三角形的角度计算是三角形一章中重要问题之一,解决这类问题的方法虽因题而异,但利用列方程求解不失为一种好方法。现举几例加以说明. 例1 已知:如图1,在△ABC中,AB=AC,点D在AC上且BD=BC=AD,求△ABC各角的度数. 解设∠A=x°,∵AD=BD, ∴∠ABD=∠A=x°,∵∠BDC=∠ABD+∠A,∴∠BDC=2x°, ∵AB=AC,BD=BC,∴∠BDC=∠C=∠ABC=2x°. ∵∠A+∠ABC+∠ACB=180°, 即x+2x+2x=180°,∴x=36°∴△ABC中,∠A=36°,∠ABC=∠C=72°, 例2 已知:如图2,在△ABC中,AB=BD=AC,AD=CD,求△ABC各角的度数.解:设∠B=x°,∵AB=AC,AD=CD,∴∠C=∠DAC=∠B=x°,∴∠ADB=∠C+∠DAC=2x°,∵AB=BD,∴∠BAD=∠ADB=2x°,  相似文献   

3.
1.4.2.(1)AB=CD.(2)∠AEB=∠CFD.3.12a.4.15°.5.10.6.①②.7.41a.8.①②③.9.D.10.A.11.A.12.D.13.D.14.D.15.证法一:在△BRP和△CPQ中,∵∠B=∠C=60°,BP=CQ,∠BPR=∠CQP=90°,∴△BRP≌△CPQ,∴RP=PQ.同理,PQ=QR.∴△RPQ为等力三角形.证法二:∵AB=BC=AC,∴∠B=∠C=∠A=60°.又BP=CQ=AR,∴△BRP≌△CPQ≌△AQR.∴PR=PQ=RQ.16.(1)连结AD,∵D为BC中点,△ABC为等腰三角形,∴∠DAE=∠DAF,∴△ADE≌△ADF,∴DE=DF.(2)在Rt△BDE和Rt△CDF中∠BED=∠CFD=90°,∵AB=AC,∴∠B=∠C.又ED=DF,∴…  相似文献   

4.
在证明题中,常会出现二倍角问题,此类问题往往有一定难度,需要认真分析已知与结论之间的联系,添加适当的辅助线,从而化难为易.现举例说明. 一、作倍角的平分线例1 已知:如图1,在△ABC中,∠B=2∠A,AB=2BC.求证:△ABC是直角三角形. 证明:作∠ABC的平分线BD交AC于点D,取AB的中点E,连结DE. ∵∠ABC=2∠A,∠ABC=2∠1=2∠2,∴∠A=∠1=∠2.即△ABD为等腰三角形.∵E为AB边中点,∴DE⊥AB.∵BE=12AB=BC,∠1=∠2,BD=BD,∴△BDE≌△BDC.∴∠BCD=∠BED=90°.即△ABC为直角三角形.二、构造倍角的等角…  相似文献   

5.
1.巧构全等三角形证线段相等例 1.已知 ,如图 ,AB=DE,直线 AE、BD相关于点 O,∠ B与∠ D互补。  求证 :AO=ED。证明 :过点 A作 AC∥ DE交 BD于 C,则∠ D=∠ 2。∵∠ 1 ∠ 2 =180°,∠ B ∠ D=180°,∴∠ 1=∠ B,∴ AB=AC,∴ AB=DE=CA。在△ ACO和△ EDO中 ,∠ AOC=∠ EOD,∠ 2=∠ D,AC=DE;∴△ ACO △ EDO( AAS) ,∴ AO=ED。2 .巧构全等三角形证角相等例 2 .已知等边△ ABC的边长为 a,在 BC的延长线上取一点 D,使 CD=b,在 BA延长线上取一点 E,使 AE=a b。求证 :∠ ECD=∠ EDC。证明 :过 E作 EF∥ AC…  相似文献   

6.
很多几何题的解决都依赖于添置辅助线 ,其中通过“补形” ,将一些不规则的图形转化为规则的基本图形 ,特别是转化为一些特殊的图形 ,然后再利用它们的特性来解题 ,充分体现了转化思想、化归方法的妙用 .一、巧用 60°角构造直角三角形或等边三角形例 1 已知 :如图 1 ,在四边形ABCD中 ,∠A =60°,∠B =∠D =90°,BC =1 ,AD =2 .求 :四边形ABCD的面积 .解  分别延长AB、DC ,设交于点E ,∵∠A =60° ,∠D =90°,∴∠E =30°.在直角三角形ADE中 ,∵AD =2 ,∴AE =4,DE =2 3,在直角三角形BCE中 ,∵BC =1 ,∴BE =3,S四边形ABCD…  相似文献   

7.
不少几何题,可由题设及图形特征,通过边计算边推理进行证明。这是几何证明中常常采用的一种证题方法。 例1 已知:如图1,在△ABC中,∠C=90°,D和E是斜边AB上的点,且AD=AC,BE=BC。求证:∠ECD=45°。证明 ∵ AD=AC,BE=BC。 ∴ ∠1+∠2=∠4=∠3+∠B,① ∠1+∠3=∠5=∠2+∠A,②  相似文献   

8.
吴天辅 《云南教育》2003,(11):37-37
适当改变数学问题的题设或结论,抓住本质,不断地将“未知”转化为“已知”,使众多题目相互沟通,递推提升,从而循序渐进地解决一系列问题,对提高学生的思维能力,有重要意义。例1 如图1,在△ABC中,∠ACB=90°,CD、CE、CF分别是△ABC的角平分线,中线和高。求证:∠FCD=∠DCE。证明:∵∠ACB=90°,并且AE=EB∴CE=AE=BE=12AB∠A+∠B=90°∠B=∠BCE,∠ACD=∠BCD∵CF⊥AB∴90°-∠B=90°-∠ACF∴∠B=∠BCE=∠ACF∴∠ACD-∠ACF=∠BCD-∠BCE即:∠FCD=∠DCE例2如图2在△ABC中,∠ACB=90°,AB的垂直平分线MN与AB相…  相似文献   

9.
与角平分线有关的几何问题在各类考试(竞赛和中考)中屡见不鲜,解决这类问题时,若能通过巧添辅助线构造全等三角形常可使问题化难为易.例1如图,在△ABC中,∠BAC的平分线交BC于D,AC=AB BD,∠C=30°,则∠ABC的度数是(江苏省初中数学竞赛题)()A.45°B.60°C.75°D.90°解:延长AB到E,使AE=AC,连接DE,∵∠1=∠2,AD=AD,∴△AED≌△ACD(SAS).∴∠E=∠C=30°.又AE=AB BE,AC=AB BD,∴BE=BD.从而∠3=∠E.∴∠ABC=2∠E=60°.故选:B.反思:若在AC上截取AF=AB,同学们考虑怎样证明?例2如图,已知在△ABC中,AB>AC,AD为∠A的…  相似文献   

10.
与角平分线有关的证明问题在几何学习中屡见不鲜。由于角平分线具备“角相等”和“公共边”这两个自身条件,因此,解决这类问题,常可考虑沿角平分线两侧构造全等三角形的方法。例1如图1,在△ABC中,∠BAC的外角平分线上取一点D,连结BD、CD。求证:BD+CD>AB+AC·证明:在BA延长线上截取AE=AC,连结DE.图1∵∠1=∠2,AD公用∴△ADC≌△ADE∵ED=CD在△EBD中,ED+BD>BE,∴BD+CD>AB+AC·例2如图2,△ABC中,AD平分∠BAC交BC于D,AC=AB+BD·求证:∠ABC=2∠C·证明:延长AB到E,使AE=AC,连结DE·图2∵AE=AC,∠1=∠2,AD=A…  相似文献   

11.
在2004年12月5日举行的江苏省第十九届初中数学竞赛初二年级第1试试卷中,有这样一题:如图1,四边形ABCD为正方形,以AB为边向正方形外作等边三角形ABE.CE与DB相交于点F,则∠AFD=.通过测量不难发现∠AFD=60°.如何推出这个答案呢?充分利用正方形关于对角线对称就可以迅速找到解题思路:∵正方形ABCD关于对角线BD对称,∴△AFD#△CFD,∴∠AFD=∠CFD.∵CB=AB=BE,∠CBA=90°,∠ABE=60°,∴∠BCE=∠BEC=15°.∴∠AFD=∠CFD=∠ECB+∠FBC=15°+45°=60°.正方形关于对角线对称,这是一个明显的事实,利用这一性质,可以较为巧…  相似文献   

12.
一、利用全等三角形的性质证明例1 已知:如图1,D、E在线段BC上,AD=AE,BD=CE.求证:∠B=∠C.证明:∵AD=AE,∴∠1=∠2,∴∠ADB=∠AEC在△ABD和△ACE中,BD=CE,∠ADB=∠AEC,AD=AE,∴△ABD≌△ACE(SAS).∴∠B=∠C.  相似文献   

13.
题目如图,已知:圆内接四边形ABCD中,AD≠AB, ∠DAB=90°,对角线AC平分∠DAB,若AD=a,AB=b,则AC=___。(1996年《中学生数理化》“东亚杯”竞赛初三年级试题) 解过点C作CE⊥AC交AB的延长线于点E,则∠ACB+∠BCE=90°,又∠DAB=90°→∠DCA+∠ACB=90°,∴∠DCA=∠BCE,又∠CBE=∠D。 AC平分∠DAB→DC=BC→DC=BC。  相似文献   

14.
与角平分线有关的证明和求值问题在几何学习中屡见不鲜。解答此类问题时 ,可采取沿角平分线两侧构造全等三角形的方法 ,这样能化难为易。一、当题设中出现了角的一边上一点与角平分线的垂线段时 ,可延长该垂线段与角的另一边相交。例 1 如图 ,AC=BC,∠ ACB=90°,∠ A的平分线 AD交 BC于 D,过 B作BE⊥ AD于 E。求证 :BE=12 AD。   (1 999年天津市初二数学竞赛试题 )证明 :延长 BE交 AC的延长线于 F。∵∠ AEB=∠ AEF=90°, AE=AE,∠ 1 =∠ 2 ,∴△ AEB≌△ AEF(A SA)。∴ BE=FE=12 BF。∵BC⊥AF,AE⊥ BF,∴∠ B…  相似文献   

15.
平面几何中有关二次方程的问题,大多可以应用韦达定理去解。兹举例如下: 梯形ABCD中(图1),∠B作圆,交BC于E,F。设∠EAB=α,∠EAD=β,求证tgα和tgβ是方程AB·x~2-BC·x+CD=0的两个根。[分析]:在这道题中,只要证明tgα+tgβ=(BC)/(AB),tgαtgβ=(CD)/(AB)就行了。由已知条件,tgα=(BE)/(AB);联DE,∵AD为直径,90°。以AD为直径∠AED=∴tgβ=(DE)/(AE)。但(BE)/(AB)和(DE)/(AE)的分母不同,所以还要化简。联AF,因A、D、F、E四点共圆。∴∠ADE=∠AFE,∠FAB=90°-∠AFE=90°-∠ADE=β,∴tgβ=(BF)/(AB)。因此,解本题的关键在于证  相似文献   

16.
利用三角形全等可证明线段相等,以及证明与线段相等有关的线段和、差、倍、分等问题;还可证明两角相等,以及证明与两角相等有关的线段平行、线段垂直等问题.例1如图,∠BAC=90°,AB=AC,F是BC上一点,BD⊥AF于D,E为AF延长线上一点,CE⊥AE,求证:DE=AE-CE.证明:∵CE⊥AE,BD⊥AF于D,∴∠AEC=∠BDA=90°.∴∠1=90°-∠3=∠2.在△AEC和△BDA中,∵∠1=∠2,∠AEC=∠BDA,AC=AB,∴△AEC≌△BDA.∴CE=AD.∵DE=AE-AD,∴DE=AE-CE.例2如图,在△ABC中,D是AB的中点,DE∥BC交AC于E,F是BC上的点,BF=DE,求证:DF∥AC.证…  相似文献   

17.
在数学习题教学过程中,要引导学生对一些题目用不同的思想方法,从不同的思维角度去寻找多种解法,不仅有助于培养学生灵活运用知识的能力,而且也有助于对他们发散思维的训练和创新能力的培养.例:已知AD是△ABC的角平分线,求证:BDDC=ABAC.证法一:如图1,过D作DE∥AB,交AC于E,则BDDC=AEEC.由∠1=∠2,∠1=∠3,得∠2=∠3,∴AE=DE,故AEEC=DEEC,又DEEC=ABAC,∴BDDC=ABAC.证法二:如图2,过D作DE∥AC,交AB于E,则BDDC=BEAE.由∠1=∠2,∠2=∠3,得∠1=∠3,∴DE=AE,故BEAE=BEDE,又BEDE=ABAC,∴BDDC=ABAC.证法三:如图3,过C点作CE∥AD,交BA的延长线于E,则BDDC=ABAE.由∠1=∠2,∠2=∠3,∠1=∠E,得∠3=∠E,故AE=AC,∴BDDC=ABAC.证法四:如图4,过B点作BE∥AD,交CA的延长线于E,则BDDC=AEAC.由∠1=∠2,∠1=∠3,∠2=∠E,得∠3=∠E,故AE=AB,∴BDDC=ABAC.证法五:如图5,过B点作BE∥AC,交AD的延长线于E,则BDDC=BEAC...  相似文献   

18.
如图一,在△ABC中,AD为∠BAC的平分线,则AD~2 BD·DC=AB·AC. 这就是平面几何中著名的斯库顿定理.它的证法简便. 证明:延长∠BAC的平分线AD交⊙ABC于E,连结BE.∴∠E=∠C,∠BAE=∠DAC,∵△ABE∽△ADCAB/AE=AD/AC,∴AD(AD DE)=AB·AC.即AD~2 AD·DE=AB·AC,由相交弦定理得AD·DE=BD·DC,∴AD~2 BD·DC=AB·AC.  相似文献   

19.
相似三角形应用广泛,尤其在计算方面有它的独到之处,它常起到几何与代数之间相互沟通的桥梁作用。现举例如下:一、利用相似形求线段的长例1(如图1)在△ABC中,∠C=90°,D为BC上一点,若DE⊥AE,∠ADC=45°,DE∶AE=1∶5,BE=3,求△ABD的面积。解:在Rt△DEA中,设DE=x,则AE=5xAD=(5x)2+x樤2=樤26x在Rt△ADC中,∵∠ADC=45°,∴AC=DC=樤22AD=樤13x在Rt△BDE中,BD=32+x樤2=9+x樤2在Rt△BDE和Rt△BAC中,∠DBE=∠ABC则Rt△BDE∽Rt△BAC∴DEAC=BDBA,即x樤13x=9+x樤23+5x解得x1=2,x2=-92(x不能为负数,∴x2不合题意舍去)…  相似文献   

20.
一些几何问题中常常出现有关角平分线的条件 ,能否恰当利用角平分线巧作辅助线 ,往往成为解题的关键 .下面举例说明如何利用角平分线作辅助线 .一、过角平分线上的一点作一边的平行线构造等腰三角形 .例 1 如图 1 ,在 ABC中 ,∠B、∠C的平分线交于I ,过I点平行于BC的直线分别交AB、AC于D和E .求证 :DE =BD +EC .证明 ∵BI平分∠ABC ,∴∠ABI=∠IBC .又∵DE∥BC ,∴∠DIB =∠IBC ,∴∠DBI =∠DIB ,∴DI=DB .同理 :EI=EC ,∴DE =DB+EC .评注 本题根据角平分线的定义 ,过其上一点作角的一边的平行线 ,则又根据平…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号