首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We present a microfluidic platform able to trap single GUVs in parallel. GUVs are used as model membranes across many fields of biophysics including lipid rafts, membrane fusion, and nanotubes. While their creation is relatively facile, handling and addressing single vesicles remains challenging. The PDMS microchip used herein contains 60 chambers, each with posts able to passively capture single GUVs without compromising their integrity. The design allows for circular valves to be lowered from the channel ceiling to isolate the vesicles from rest of the channel network. GUVs containing calcein were trapped and by rapidly opening the valves, the membrane pore protein α-hemolysin (αHL) was introduced to the membrane. Confocal microscopy revealed the kinetics of the small molecule efflux for different protein concentrations. This microfluidic approach greatly improves the number of experiments possible and can be applied to a wide range of biophysical applications.  相似文献   

2.
Droplet interface bilayer (DIB) networks are emerging as a cornerstone technology for the bottom up construction of cell-like and tissue-like structures and bio-devices. They are an exciting and versatile model-membrane platform, seeing increasing use in the disciplines of synthetic biology, chemical biology, and membrane biophysics. DIBs are formed when lipid-coated water-in-oil droplets are brought together—oil is excluded from the interface, resulting in a bilayer. Perhaps the greatest feature of the DIB platform is the ability to generate bilayer networks by connecting multiple droplets together, which can in turn be used in applications ranging from tissue mimics, multicellular models, and bio-devices. For such applications, the construction and release of DIB networks of defined size and composition on-demand is crucial. We have developed a droplet-based microfluidic method for the generation of different sized DIB networks (300–1500 pl droplets) on-chip. We do this by employing a droplet-on-rails strategy where droplets are guided down designated paths of a chip with the aid of microfabricated grooves or “rails,” and droplets of set sizes are selectively directed to specific rails using auxiliary flows. In this way we can uniquely produce parallel bilayer networks of defined sizes. By trapping several droplets in a rail, extended DIB networks containing up to 20 sequential bilayers could be constructed. The trapped DIB arrays can be composed of different lipid types and can be released on-demand and regenerated within seconds. We show that chemical signals can be propagated across the bio-network by transplanting enzymatic reaction cascades for inter-droplet communication.  相似文献   

3.
Cell-free protein expression with bacterial lysates has been demonstrated to produce soluble proteins in microdroplets. However, droplet assays with expressed membrane proteins require the presence of a lipid bilayer. A bilayer can be formed in between lipid-coated aqueous droplets by bringing these into contact by electrokinetic manipulation in a continuous oil phase, but it is not known whether such interdroplet bilayers are compatible with high concentrations of biomolecules. In this study, we have characterized the lifetime and the structural integrity of interdroplet bilayers by measuring the bilayer current in the presence of three different commercial cell-free expression mixtures and their individual components. Samples of pure proteins and of a polymer were included for comparison. It is shown that complete expression mixtures reduce the bilayer lifetime to several minutes or less, and that this is mainly due to the lysate fraction itself. The fraction that contains the molecules for metabolic energy generation does not reduce the bilayer lifetime but does give rise to current steps that are indicative of lipid packing defects. Gel electrophoresis confirmed that proteins are only present at significant amounts in the lysate fractions and, when supplied separately, in the T7 enzyme mixture. Interestingly, it was also found that pure-protein and pure-polymer solutions perturb the interdroplet bilayer at higher concentrations; 10% (w/v) polyethylene glycol 8000 (PEG 8000) and 3 mM lysozyme induce large bilayer currents without a reduction in bilayer lifetime, whereas 3 mM albumin causes rapid bilayer failure. It can, therefore, be concluded that the high protein content of the lysates and the presence of PEG polymer, a typical lysate supplement, compromise the structural integrity of interdroplet bilayers. However, we established that the addition of lipid vesicles to the cell-free expression mixture stabilizes the interdroplet bilayer, allowing the exposure of interdroplet bilayers to cell-free expression solutions. Given that cell-free expressed membrane proteins can insert in lipid bilayers, we envisage that microdroplet technology may be extended to the study of in situ expressed membrane receptors and ion channels.  相似文献   

4.
Teh SY  Khnouf R  Fan H  Lee AP 《Biomicrofluidics》2011,5(4):44113-4411312
In this paper, we present a microfluidic platform for the continuous generation of stable, monodisperse lipid vesicles 20–110 μm in diameter. Our approach utilizes a microfluidic flow-focusing droplet generation design to control the vesicle size by altering the system’s fluid flow rates to generate vesicles with narrow size distribution. Double emulsions are first produced in consecutive flow-focusing channel geometries and lipid membranes are then formed through a controlled solvent extraction process. Since no strong solvents are used in the process, our method allows for the safe encapsulation and manipulation of an assortment of biological entities, including cells, proteins, and nucleic acids. The vesicles generated by this method are stable and have a shelf life of at least 3 months. Here, we demonstrate the cell-free in vitro synthesis of proteins within lipid vesicles as an initial step towards the development of an artificial cell.  相似文献   

5.
We describe a scalable artificial bilayer lipid membrane platform for rapid electrophysiological screening of ion channels and transporters. A passive pumping method is used to flow microliter volumes of ligand solution across a suspended bilayer within a microfluidic chip. Bilayers are stable at flow rates up to ∼0.5 μl/min. Phospholipid bilayers are formed across a photolithographically defined aperture made in a dry film resist within the microfluidic chip. Bilayers are stable for many days and the low shunt capacitance of the thin film support gives low-noise high-quality single ion channel recording. Dose-dependent transient blocking of α-hemolysin with β-cyclodextrin (β-CD) and polyethylene glycol is demonstrated and dose-dependent blocking studies of the KcsA potassium channel with tetraethylammonium show the potential for determining IC50 values. The assays are fast (30 min for a complete IC50 curve) and simple and require very small amounts of compounds (100 μg in 15 μl). The technology can be scaled so that multiple bilayers can be addressed, providing a screening platform for ion channels, transporters, and nanopores.  相似文献   

6.
This study proposes a capillary dielectrophoretic chip to separate blood cells from a drop of whole blood (approximately 1 μl) sample using negative dielectrophoretic force. The separating efficiency was evaluated by analyzing the image before and after dielectrophoretic force manipulation. Blood samples with various hematocrits (10%–60%) were tested with varied separating voltages and chip designs. In this study, a chip with 50 μm gap design achieved a separation efficiency of approximately 90% within 30 s when the hematocrit was in the range of 10%–50%. Furthermore, glucose concentration was electrochemically measured by separating electrodes following manipulation. The current response increased significantly (8.8-fold) after blood cell separation, which was attributed not only to the blood cell separation but also to sample disturbance by the dielectrophoretic force.  相似文献   

7.
We have performed microfluidic experiments with erythrocytes passing through a network of microchannels of 20–25 μm width and 5 μm of height. Red blood cells (RBCs) were flowing in countercurrent directions through microchannels connected by μm pores. Thereby, we have observed interesting flow dynamics. All pores were blocked by erythrocytes. Some erythrocytes have passed through pores, depending on the channel size and cell elasticity. Many RBCs split into two or more smaller parts. Two types of splits were observed. In one type, the lipid bilayer and spectrin network were cut at the same time. In the second type, the lipid bilayer reconnected, but the part of spectrin network stayed outside the cell forming a rope like structure, which could eventually break. The microporous membrane results in multiple breakups of the cells, which can have various clinical implications, e.g., glomerulus hematuria and anemia of patients undergoing dialysis. The cell breakup procedure is similar to the one observed in the droplet breakage of viscoelastic liquids in confinement.  相似文献   

8.
This paper describes a new and facile approach for the formation of pore-spanning bilayer lipid membranes (BLMs) within a poly(dimethylsiloxane) (PDMS) microfluidic device. Commercially, readily available polycarbonate (PC) membranes are employed for the support of BLMs. PC sheets with 5 μm, 2 μm, and 0.4 μm pore diameters, respectively, are thermally bonded into a multilayer-stack, reducing the pore density of 0.4 μm-pore PC by a factor of 200. The BLMs on this support are considerably stable (a mean lifetime: 17 h). This multilayer-stack PC (MSPC) membrane is integrated into the PDMS chip by an epoxy bonding method developed to secure durable bonding under the use of organic solvents. The microchip has a special channel for guiding a micropipette in the proximity of the MSPC support. With this on-site injection technique, tens to hundreds of nanoliters of solutions can be directly dispensed to the support. Incorporating gramicidin ion channels into BLMs on the MSPC support has confirmed the formation of single BLMs, which is based on the observation from current signals of 20 pS conductance that is typical to single channel opening. Based on the bilayer capacitance (1.4 pF), about 15% of through pores across the MSPC membrane are estimated to be covered with BLMs.  相似文献   

9.
Droplet-based microfluidics has shown potential in high throughput single cell assays by encapsulating individual cells in water-in-oil emulsions. Ordering cells in a micro-channel is necessary to encapsulate individual cells into droplets further enhancing the assay efficiency. This is typically limited due to the difficulty of preparing high-density cell solutions and maintaining them without cell aggregation in long channels (>5 cm). In this study, we developed a short pinched flow channel (5 mm) to separate cell aggregates and to form a uniform cell distribution in a droplet-generating platform that encapsulated single cells with >55% encapsulation efficiency beating Poisson encapsulation statistics. Using this platform and commercially available Sox substrates (8-hydroxy-5-(N,N-dimethylsulfonamido)-2-methylquinoline), we have demonstrated a high throughput dynamic single cell signaling assay to measure the activity of receptor tyrosine kinases (RTKs) in lung cancer cells triggered by cell surface ligand binding. The phosphorylation of the substrates resulted in fluorescent emission, showing a sigmoidal increase over a 12 h period. The result exhibited a heterogeneous signaling rate in individual cells and showed various levels of drug resistance when treated with the tyrosine kinase inhibitor, gefitinib.  相似文献   

10.
A biochip system imitates the oviduct of mammals with a microfluidic channel to achieve fertilization in vitro of imprinting-control-region (ICR) mice. We apply a method to manipulate and to position the oocyte and the sperm of ICR mice at the same time in our microfluidic channel with a positive dielectrophoretic (DEP) force. The positive dielectrophoretic response of the oocyte and sperm was exhibited under applied bias conditions AC 10 Vpp waveform, 1 MHz, 10 min. With this method, the concentration of sperm in the vicinity of the oocyte was increased and enhanced the probability of natural fertilization. We used commercial numerical software (CFDRC-ACE+) to simulate the square of the electric field and analyzed the location at which the oocyte and sperm are trapped. The microfluidic devices were designed and fabricated with poly(dimethylsiloxane). The results of our experiments indicate that a positive DEP served to drive the position of the oocyte and the sperm to natural fertilization (average rate of fertilization 51.58%) in our microchannel structures at insemination concentration 1.5 × 106 sperm ml−1. Embryos were cultured to two cells after 24 h and four cells after 48 h.  相似文献   

11.
We demonstrate the generation of water-in-water (w/w) jets and emulsions by combining droplet microfluidics and aqueous two-phase systems (ATPS). The application of ATPS in microfluidics has been hampered by the low interfacial tension between typical aqueous phases. The low tension makes it difficult to form w/w droplets with conventional droplet microfluidic approaches. We show that by mechanically perturbing a stable w/w jet, w/w emulsions can be prepared in a controlled and reproducible fashion. We also characterize the encapsulation ability of w/w emulsions and demonstrate that their encapsulation efficiency can be significantly enhanced by inducing formation of precipitates and gels at the w/w interfaces. Our work suggests a biologically and environmentally friendly platform for droplet microfluidics and establishes the potential of w/w droplet microfluidics for encapsulation-related applications.  相似文献   

12.
Precise patterning of metals is required for diverse microfluidic and microelectromechanical system (MEMS) applications ranging from the separation of proteins to the manipulation of single cells and drops of water-in-oil emulsions. Here we present a very simple, inexpensive method for fabricating micropatterned electrodes. We deposit a thin metal layer of controlled thickness using wet chemistry, thus eliminating the need for expensive equipment typically required for metal deposition. We demonstrate that the resulting deposited metal can be used to fabricate functional electrodes: The wet-deposited metal film can sustain patterning by photolithography down to micron-sized features required for MEMS and microfluidic applications, and its properties are suitable for operative electrodes used in a wide range of microfluidic applications for biological studies.  相似文献   

13.
Oscillating electrowetting on dielectrics (EWOD) with coplanar electrodes is investigated in this paper as a way to provide efficient stirring within a drop with biological content. A supporting model inspired from Ko et al. [Appl. Phys. Lett. 94, 194102 (2009)] is proposed allowing to interpret oscillating EWOD-induced drop internal flow as the result of a current streaming along the drop surface deformed by capillary waves. Current streaming behaves essentially as a surface flow generator and the momentum it sustains within the (viscous) drop is even more significant as the surface to volume ratio is small. With the circular electrode pair considered in this paper, oscillating EWOD sustains toroidal vortical flows when the experiments are conducted with aqueous drops in air as ambient phase. But when oil is used as ambient phase, it is demonstrated that the presence of an electrode gap is responsible for a change in drop shape: a pinch-off at the electrode gap yields a peanut-shaped drop and a symmetry break-up of the EWOD-induced flow pattern. Viscosity of oil is also responsible for promoting an efficient damping of the capillary waves which populate the surface of the actuated drop. As a result, the capillary network switches from one standing wave to two superimposed traveling waves of different mechanical energy, provided that actuation frequency is large enough, for instance, as large as the one commonly used in electrowetting applications (f ∼ 500 Hz and beyond). Special emphasis is put on stirring of biological samples. As a typical application, it is demonstrated how beads or cell clusters can be focused under flow either at mid-height of the drop or near the wetting plane, depending on how the nature of the capillary waves is (standing or traveling), and therefore, depending on the actuation frequency (150 Hz–1 KHz).  相似文献   

14.
While advances in genomics have enabled sensitive and highly parallel detection of nucleic acid targets, the isolation and extraction of the nucleic acids remain a critical bottleneck in the workflow. We present here a simple 3D printed microfluidic chip that allows for the vortex and centrifugation free extraction of nucleic acids. This novel microfluidic chip utilizes the presence of a water and oil interface to filter out the lysate contaminants. The pure nucleic acids, while bound on cellulose particles, are magnetically moved across the oil layer. We demonstrated efficient and rapid extraction of spiked Human Papillomavirus (HPV) 18 plasmids in specimen transport medium, in under 15 min. An overall extraction efficiency of 61% is observed across a range of HPV plasmid concentrations (5 × 101 to 5 × 106 copies/100 μl). The magnetic, interfacial, and viscous drag forces inside the microgeometries of the chip are modeled. We have also developed a kinetics model for the adsorption of nucleic acids on cellulose functionalized superparamagnetic beads. We also clarify here the role of carrier nucleic acids in the adsorption and isolation of nucleic acids. Based on the various mechanistic insights detailed here, customized microfluidic devices can be designed to meet the range of current and emerging point of care diagnostics needs.  相似文献   

15.
We describe a system for the isolation, concentration, separation, and recovery of human osteoblast-like cells from a heterogeneous population using dielectrophoretic ring traps. Cells flowing in a microfluidic channel are immobilized inside an electric field cage using negative dielectrophoresis. A planar ring electrode creates a closed trap while repelling surrounding cells. Target cells are identified by fluorescent labeling, and are trapped as they pass across a ring electrode by an automated system. We demonstrate recovery of small populations of human osteoblast-like cells with a purity of 100%, which in turn demonstrates the potential of such a device for cell selection from a heterogeneous population.  相似文献   

16.
Droplet-based microfluidic technologies are powerful tools for applications requiring high-throughput, for example, in biochemistry or material sciences. Several systems have been proposed for the high-throughput production of monodisperse emulsions by parallelizing multiple droplet makers. However, these systems have two main limitations: (1) they allow the use of only a single disperse phase; (2) they are based on multiple layer microfabrication techniques. We present here a pipette-and-play solution offering the possibility of manipulating simultaneously 10 different disperse phases on a single layer device. This system allows high-throughput emulsion production using aqueous flow rates of up to 26 ml/h (>110 000 drops/s) leading to emulsions with user-defined complex chemical composition. We demonstrate the multiplex capabilities of our system by measuring the kinetics of β-galactosidase in droplets using nine different concentrations of a fluorogenic substrate.  相似文献   

17.
We have developed a coaxial flow focusing geometry that can be fabricated using soft lithography in poly(dimethylsiloxane) (PDMS). Like coaxial flow focusing in glass capillary microfluidics, our geometry can form double emulsions in channels with uniform wettability and of a size much smaller than the channel dimensions. However, In contrast to glass capillary coaxial flow focusing, our geometry can be fabricated using lithographic techniques, allowing it to be integrated as the drop making unit in parallel drop maker arrays. Our geometry enables scalable formation of emulsions down 7 μm in diameter, in large channels that are robust against fouling and clogging.  相似文献   

18.
In this work, invoking join asymmetric ac polarization using double half-quadrupole electrodes in a symmetric arrangement, we demonstrate a head-on ac electro-osmotic streaming capable of focusing and trapping DNA molecules efficiently. This is manifested by the observation that picomolar DNA molecules can be trapped into a large crosslike spot with at least an order of magnitude concentration enhancement within just half a minute. We identify that the phenomenon is a combined result of the formation of two prefocused DNA jets flowing toward each other, dipole-induced attraction between focused DNA molecules, and dielectrophoretic trap on the spot. With an additional horizontal pumping, we observe that the trap can transform into a peculiar pitchfork streaming capable of continuous collection and long-distance transport of concentrated DNA molecules. We also show that the same electrode design can be used to direct assembly of submicrometer particles. This newly designed microfluidic platform not only has potentials in enhancing detection sensitivity and facilitating functional assembly for on-chip analysis but also provides an added advantage of transporting target molecules in a focused and continuous manner.  相似文献   

19.
The hypolipidemic activity of Cassia tora (Chakvat, Chakunda) (Family: Caesalpiniaceae) seeds extract have been studied in two models of hyperlipidemia in rats. In an acute model, hyperlipidemia was induced by injecting a single dose of Triton WR-1339 (400 mg/kg, b.w.) intraperitonially in rats. Feeding with C. tora seed extract at the dose of 500 mg/kg, b.w. exerted significant lipid lowering effect as assessed by the reversal of plasma levels of total cholesterol, phospholipids, triglyceride and reactivation of post heparin lipolytic activity. In the chronic model, hyperlipidemia was induced by feeding with cholesterol rich-HFD in rats. The treatment with seeds extract of C. tora (500 mg/kg, b.w.) simultaneously for 15 days also caused lowering of lipid levels in plasma and liver following reactivation of plasma post heparin lipolytic activity and hepatic lipoprotein lipase activity in animals. The hypolipidemic activity of C. tora seeds was compared with a standard drug guggulipid (200 mg/kg, b.w.) in both models.  相似文献   

20.
We report an interesting buffer electric relaxation time tuning technique, coupled with a glutaraldehyde cross-linking cell fixation reaction, which allows for sensitive dielectrophoretic analysis and discrimination of bovine red blood cell (bRBC) starvation age. The buffer composition is selected such that two easily accessible dielectrophoretic crossover frequencies (cof) exist. Low concentration glutaraldehyde fixation was observed to produce a threefold decrease in the higher cof with a comparable increase in the lower cof also witnessed. More importantly, increased glutaraldehyde fixation concentration significantly increased the higher cof by a factor found to be sensitive to the bRBC starvation age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号