首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract

This study investigated the effects of upper-body repeated-sprint training in hypoxia vs. in normoxia on world-level male rugby union players’ repeated-sprint ability (RSA) during an international competition period. Thirty-six players belonging to an international rugby union male national team performed over a 2-week period four sessions of double poling repeated-sprints (consisting of 3 × eight 10-s sprints with 20-s passive recovery) either in normobaric hypoxia (RSH, simulated altitude 3000 m, n?=?18) or in normoxia (RSN, 300 m; n?=?18). At pre- and post-training intervention, RSA was evaluated using a double-poling repeated-sprint test (6 × 10-s maximal sprint with 20-s passive recovery) performed in normoxia. Significant interaction effects (P?<?0.05) between condition and time were found for RSA-related parameters. Compared to Pre-, peak power significantly improved at post- in RSH (423?±?52 vs. 465?±?69 W, P?=?0.002, η²=0.12) but not in RSN (395?±?65 vs. 397?±?57 W). Averaged mean power was also significantly enhanced from pre- to post-intervention in RSH (351?±?41 vs. 388?±?53 W, P?<?0.001, η²=0.15), while it remained unchanged in RSN (327?±?49 vs. 327?±?43 W). No significant change in sprint decrement (P?=?0.151, η²?=?0.02) was observed in RSH (?17?±?2% vs. ?16?±?3%) nor RSN (?17?±?2% vs. ?18?±?4%). This study showed that only four upper-body RSH sessions were beneficial in enhancing repeated power production in international rugby union players. Although the improvement from RSA to game behaviour remains unclear, this finding appears of practical relevance since only a short preparation window is available prior to international games.  相似文献   

2.
Limited information exists about the movement patterns of field-hockey players, especially during elite competition. Time–motion analysis was used to document the movement patterns during an international field-hockey game. In addition, the movement patterns of repeated-sprint activity were investigated, as repeated-sprint ability is considered to be an important fitness component of team-sport performance. Fourteen members of the Australian men's field-hockey team (age 26±3 years, body mass 76.7±5.6?kg, [Vdot]O2max 57.9±3.6?ml?·?kg?1?·?min?1; mean±s) were filmed during an international game and their movement patterns were analysed. The majority of the total player game time was spent in the low-intensity motions of walking, jogging and standing (46.5±8.1, 40.5±7.0 and 7.4±0.9%, respectively). In comparison, the proportions of time spent in striding and sprinting were 4.1±1.1 and 1.5±0.6%, respectively. Our criteria for ‘repeated-sprint’ activity (defined as a minimum of three sprints, with mean recovery duration between sprints of less than 21?s) was met on 17 occasions during the game (total for all players), with a mean 4±1 sprints per bout. On average, 95% of the recovery during the repeated-sprint bouts was of an active nature. In summary, the results suggest that the motion activities of an elite field-hockey competition are similar to those of elite soccer, rugby and Australian Rules football. In addition, the investigation of repeated-sprint activity during competition has provided additional information about the unique physiological demands of elite field-hockey performance.  相似文献   

3.
Abstract

In this study, we investigated the age-related differences in repeated-sprint ability and blood lactate responses in 134 youth football players. Players from the development programme of a professional club were grouped according to their respective under-age team (U-11 to U-18). Following familiarization, the participants performed a repeated-sprint ability test [6 × 30-m sprints 30 s apart, with active recovery (2.0–2.2 m · s?1) between sprints]. The test variables were total time, percent sprint decrement, and post-test peak lactate concentration. Total time improved from the U-11 to U-15 age groups (range 33.15 ± 1.84 vs. 27.25 ± 0.82 s), whereas no further significant improvements were evident from U-15 to U-18. No significant differences in percent sprint decrement were reported among groups (range 4.0 ± 1.0% to 5.5 ± 2.1%). Post-test peak lactate increased from one age group to the next (range 7.3 ± 1.8 to 12.6 ± 1.6 mmol · l?1), but remained constant when adjusted for age-related difference in body mass. Peak lactate concentration was moderately correlated with sprint time (r = 0.70, P > 0.001). Our results suggest that performance in repeated-sprint ability improves during maturation of highly trained youth football players, although a plateau occurs from 15 years of age. In contrast to expectations based on previous suggestions, percent sprint decrement during repeated sprints did not deteriorate with age.  相似文献   

4.
Stress hormone and sleep differences in a competition versus training setting are yet to be evaluated in elite female team-sport athletes. The aim of the current study was to evaluate salivary cortisol and perceptual stress markers during competition and training and to determine the subsequent effects on sleep indices in elite female athletes. Ten elite female netball athletes (mean?±?SD; age: 23?±?6 years) had their sleep monitored on three occasions; following one netball competition match (MATCH), one netball match simulation session (TRAIN), and one rest day (CONTROL). Perceived stress values and salivary cortisol were collected immediately pre- (17:15 pm) and post-session (19:30 pm), and at 22:00 pm. Sleep monitoring was performed using wrist actigraphy assessing total time in bed, total sleep time (TST), efficiency (SE%), latency, sleep onset time and wake time. Cortisol levels were significantly higher (p?p?p?相似文献   

5.
The purpose was to assess sleep patterns, quantity and quality in adolescent (16.2?±?1.2 yr) Middle Eastern academy soccer players (n?=?20) and the influence of an intermission upon these characteristics. On a 17-day training camp (located one time zone west of home) including three discrete matches, sleep was assessed pre- (PRE) and post-match (POST) via wrist actigraphy. Retrospective actigraphy analysis identified sleep characteristics, including if players experienced a sleep intermission (YES) or not (NO) proximal to dawn, and bedtime (hh:mm), get-up time (hh:mm), time in bed (h), sleep duration (h) and sleep efficiency (%). Within YES two bouts were identified (BOUT1 and BOUT2). No differences were seen between PRE and POST, nor between BOUT1 and BOUT2 (p?>?.05). Overall players did not meet National Sleep Foundation (NSF) guidelines (7:04?±?1:16?h vs. recommended 8–10?h for 14–17 yr). Sleep duration was significantly reduced (~ ?13% or ?1:06) in YES compared to NO (6:33?±?1:05 vs. 7:29?±?1:17, p?<?.01). Despite players in YES waking earlier due to an intermission, they did not compensate for this with a later wake time, rising significantly earlier compared to NO (09:40?±?00:38 vs. 10:13?±?00:40, p?<?.05). These players on average do not obtain sufficient sleep durations relative to NSF guidelines, with decrements increased by an intermission proximal to dawn. High inter- and intra-individual variance in the players sleep characteristics indicates the need for individualized sleep education strategies and interventions to promote appropriate sleep.  相似文献   

6.
7.
Background: High-intensity interval training (HIIT) has been shown to improve cardiometabolic health during supervised lab-based studies but adherence, enjoyment, and health benefits of HIIT performed independently are yet to be understood. We compared adherence, enjoyment, and cardiometabolic outcomes after 8 weeks of HIIT or moderate-intensity continuous training (MICT), matched for energy expenditure, in overweight and obese young adults. Methods: 17 adults were randomized to HIIT or MICT. After completing 12 sessions of supervised training over 3 weeks, participants were asked to independently perform HIIT or MICT for 30 min, 4 times/week for 5 weeks. Cardiometabolic outcomes included cardiorespiratory fitness (VO2 peak), lipids, and inflammatory markers. Exercise enjoyment was measured by the validated Physical Activity Enjoyment Scale. Results: Exercise adherence (93.4?±?3.1% vs. 93.1?±?3.7%, respectively) and mean enjoyment across the intervention (100.1?±?4.3 vs. 100.3?±?4.4, respectively) were high, with no differences between HIIT and MICT (p?>?.05). Similarly, enjoyment levels did not change over time in either group (p?>?.05). After training, HIIT exhibited a greater decrease in low-density lipoprotein cholesterol than MICT (?0.66?mmol?L?1 vs. ?0.03?mmol?L?1, respectively) and a greater increase in VO2 peak than MICT (p?<?.05, +2.6?mL?kg?min?1 vs. +0.4?mL?kg?min?1, respectively). Interleukin-6 and C-reactive protein increased in HIIT (+0.5?pg?mL?1 and +?31.4?nmol?L?1, respectively) and decreased in MICT (?0.6?pg?mL?1 and ?6.7?nmol?L?1, respectively, p?<?.05). Conclusions: Our novel findings suggest that HIIT is enjoyable and has high unsupervised adherence rates in overweight and obese adults. However, HIIT may be associated with an increase in inflammation with short-term exercise in this population.  相似文献   

8.
Attenuated performance during intense exercise with limited endogenous carbohydrate (CHO) is well documented. Therefore, this study examined whether caffeine (CAF) mouth rinsing would augment performance during repeated sprint cycling in participants with reduced endogenous CHO. Eight recreationally active males (aged 23?±?2?yr, body mass 84?±?4?kg, stature 178?±?7?cm) participated in this randomized, single-blind, repeated-measures crossover investigation. Following familiarization, participants attended two separate evening glycogen depletion sessions. The following morning, participants completed five, 6?s sprints on a cycle ergometer (separated by 24?s active recovery), with mouth rinsing either (1) a placebo solution or (2) a 2% CAF solution. During a fifth visit, participants completed the sprints without prior glycogen depletion. Repeated-measures ANOVA identified significant main effect of condition (CAF, placebo, and control [P?P?P?P?P?P?相似文献   

9.
This investigation examined the oxidative stress (F2-Isoprostane; F2-IsoP) and inflammatory (interleukin-6; IL-6) responses to repeat-sprint training in hypoxia (RSH). Ten trained male team sport athletes performed 3(sets)*9(repetitions)*5?s cycling sprints in simulated altitude (3000?m) and sea-level conditions. Mean and peak sprint power output (MPO and PPO) were recorded, and blood samples were collected pre-exercise, and again at 8 and 60?min post-exercise. Both MPO and PPO were significantly reduced in hypoxia (compared to sea-level) in the second (MPO: 855?±?89 vs. 739?±?95?W, p?=?.006; PPO: 1024?±?114 vs. 895?±?112?W, p?=?.010) and third (MPO: 819?±?105 vs. 686?±?83?W, p?=?.008; PPO: 985?±?125 vs. 834?±?99?W, p?=?.008) sets, respectively. IL-6 was significantly increased from pre- to 1?h post-exercise in both hypoxia (0.7?±?0.2 vs. 2.4?±?1.4?pg/mL, p?=?.004) and sea-level conditions (0.7?±?0.2 vs. 1.6?±?0.3?pg/mL, p?d?=?0.80) suggesting higher IL-6 levels of post-hypoxia. F2-IsoP was significantly lower 1?h post-exercise in both the hypoxic (p?=?.005) and sea-level (p?=?.002) conditions, with no differences between trials. While hypoxia can impact on exercise intensity and may result in greater post-exercise inflammation, it appears to have little effect on oxidative stress. These results indicate that team sport organisations with ready access to hypoxic training facilities could confidently administer RSH without significantly increasing the post-exercise inflammatory or oxidative stress response.  相似文献   

10.
Objective: To examine the relationship between regular game-related caffeine consumption on sleep after an evening Super Rugby game. Methods: Twenty elite rugby union players wore a wrist-activity monitor to measure sleep for three days before, three days after and on the night of an evening Super Rugby game (19:00–21:00). Players ingested caffeine as they would normally (i.e. before and sometimes during a game) and saliva samples were collected before (17:00) and after (21:30) the game for caffeine concentration. Results: Compared to the nights leading up to the game, on the night of the game, players went to bed 3?h later (23:08?±?66?min vs 02:11?±?114?min; p?p?p?p?p?p?=?.06) on game night. Conclusion: Caffeine consumption before a Super Rugby game markedly increases post-game saliva caffeine levels. This may contribute to the observed 3.5?h delay in time at sleep onset and the 1.5?h reduction in sleep duration on the night of the game. This study highlights the need for a strategic approach to the use of caffeine within a Super Rugby team considering the potential effect on post-game sleep.  相似文献   

11.
The purpose of this study was to examine the effects of active recovery (AR) and passive recovery (PR) using short (2-min) and long (4-min) intervals on swimming performance. Twelve male competitive swimmers completed a progressively increasing speed test of 7?×?200-m swimming repetitions to locate the speed before the onset of curvilinear increase in blood lactate concentration (LT1). Subsequently, performance time of 6?×?50-m sprints was recorded during four different conditions: (i) 2-min PR (PR-2), (ii) 4-min PR (PR-4), (iii) 2-min AR (AR-2) and (iv) 4-min AR (AR-4) intervals. Blood lactate concentration was measured before the first and after the last 50-m repetition. AR was applied at an intensity corresponding to LT1. Performance as indicated by the time needed to complete 6?×?50-m sprints was impaired after AR-4 compared to PR-4 (AR-4: 28.65?±?1.04, PR-4: 28.17?±?0.72?s; mean% difference: MD% ±s; ±90% confidence limits: 90%CL, 1.71?±?3.01%; ±1.43%, p?=?.01) but was not different between AR-2 compared to PR-2 conditions (AR-2: 28.68?±?0.85, PR-2: 28.69?±?0.82 s; MD%: 0.03?±?1.61%; 90%CL?±?0.77%, p?=?.99). Performance in sprint-6 was improved after AR compared to PR independent of interval duration (AR: 28.55?±?0.81, PR: 29.01?±?1.03?s; MD%: 1.52?±?2.61%; 90%CL?±?1.2%; p?=?.03). Blood lactate concentration was lower after AR-4 compared to PR-4 but did not differ between AR-2 and PR-2 conditions. In conclusion, AR impaired performance after a 4-min but not after a 2-min interval. A better performance during sprint-6 after AR could be attributed to a faster metabolic recovery or anticipatory regulatory mechanisms towards the end of the series especially when adequate 4-min active recovery interval is applied.  相似文献   

12.
Abstract

No published research has assessed sleep patterns of elite rugby union players following match-play. The present study examined sleep patterns of professional rugby union players, prior and post-match-play, to assess the influence of competition. Twenty-eight male rugby union players (24.4?±?2.9 years, 103.9?±?12.2?kg) competed in one of four competitive home matches. Player's sleep behaviours were monitored continuously using an Actiwatch® from two days before the match, until three days post-match. Repeated measures of analysis of variance (ANOVA) showed significant differences across the time points measured for time to bed (F?=?26.425, η2 ?=?0.495, p < .001), get up time (F?=?21.175, η2?=?0.440, p?<?.001), time spent in bed (F?=?10.669, η2?=?0.283, p?<?.001), time asleep (F?=?8.752, η2?=?0.245, p?<?.001) and percentage of time moving (F?=?4.602, η2?=?0.146 p?<?.05). Most notable, post hocs revealed a significant increase for time in bed the night before the match (p?<?.01; 95% CI?=?0?:?10–1?:?28?h; 9.7?±?13.5%) compared with the reference night sleep. Furthermore, time asleep significantly decreased post-match (p?<?.05; 95% CI?=??0:03 to ?1:59?h; ?19.5?±?19.8%) compared to two nights pre-match. Across all time points, sleep latency and efficiency for most players were considered abnormal compared to that expected in normal populations. The results demonstrate that sleep that is deprived post-match may have detrimental effects on the recovery process.  相似文献   

13.
Abstract

The aim of this study was to examine the effects of changes in maximal aerobic (MAS) and sprinting (MSS) speeds and the anaerobic reserve (ASR) on repeated-sprint performance. Two hundred and seventy highly-trained soccer players (14.5 ± 1.6 year) completed three times per season (over 5 years) a maximal incremental running test to approach MAS, a 40-m sprint with 10-m splits to assess MSS and a repeated-sprint test (10 × 30-m sprints), where best (RSb) and mean (RSm) sprint times, and percentage of speed decrement (%Dec) were calculated. ASR was calculated as MSS-MAS. While ?RSb were related to ?MSS and ?body mass (r2 = 0.42, 90%CL[0.34;0.49] for the overall multiple regression, n = 334), ?RSm was also correlated with ?MAS and ?sum of 7 skinfolds (r2 = 0.43 [0.35;0.50], n = 334). There was a small and positive association between ?%Dec and ?MAS (r2 = 0.02 [?0.07;0.11], n = 334). Substantial ?MSS and ?MAS had a predictive value of 70 and 55% for ?RSm, respectively. Finally, ?ASR per se was not predictive of ?RSm (Cohen’s = +0.8 to ?0.3 with increased ASR), but the greater magnitude of ?RSm improvement was observed when MSS, MAS and ASR increased together (0.8 vs. +0.4 with ASR increased vs. not, additionally to MSS and MAS). Low-cost field tests aimed at assessing maximal sprinting and aerobic speeds can be used to monitor ?RS performance.  相似文献   

14.
Abstract

The aim of this study was to characterise the acceleration and sprint profiles of elite football match play in one Norwegian elite football team (Rosenborg FC). Fifteen professional players in five playing positions took part in the study (n = 101 observations). Player movement was recorded during every domestic home game of one full season (n = 15) by an automatic tracking system based on microwave technology. Each player performed 91 ± 21 accelerations per match, with a lower number in the second compared with the first half (47 ± 12 vs. 44 ± 12). Players in lateral positions accelerated more often compared to players in central positions (98.3 ± 20.5 vs. 85.3 ± 19.5, p < 0.05). Average sprint distance was 213 ± 111 m distributed between 16.6 ± 7.9 sprints, with no differences between first (106 ± 60 m, 8.2 ± 4.2 sprints) and second halves (107 ± 72 m, 8.3 ± 4.8 sprints). Players in lateral positions sprinted longer distances (287 ± 211 m vs. 160 ± 76 m, p < 0.05) and tended to sprint more often (21.6 ± 7.8 vs. 13.0 ± 5.7, p = 0.064) compared to players in central positions. We found more walking and less of the more intense activities during the last third of the season compared to the first. The main finding in this study was that Norwegian elite players had substantially less number of accelerations and fewer but longer sprints than previous studies reported for higher-ranked leagues. Also, less high-intensity activity was found towards the end of the season. Ultimately, these data provide useful information for the fitness coach (1) in planning of position-specific football training and (2) to avoid the decline in high-intensity activities the last third of the competitive season.  相似文献   

15.
The potential effect of fatigue on stroke production in tennis players is still controversial. The aim of this study was to analyse the tennis serve speed and accuracy in prolonged male professional matches played on grass courts. We analysed tennis serve statistics from five-set Wimbledon matches (n?=?15; 30 players). Results showed that match duration averaged 208.3?±?28.3?min. The overall serve speed was 177.0?±?10.2?km/h in the first set and 176.1?±?11.7?km/h in the fifth set (p?=?.34). The difference of all accuracy values of first set serves was not significantly different from those of the fifth set: percentage of valid first serves, 63.1?±?11.1% vs. 62.3?±?11.8%, respectively (p?=?.78); percentage of “aces”, 11.2?±?9.1% vs. 10.0?±?8.9%, respectively (p?=?.39); percentage of “winners”, 2.6?±?7.6% vs. 1.2?±?2.2%, respectively (p?=?.36); percentage of “double faults”, 2.8?±?3.0% vs. 2.8?±?3.4% (p?=?.97). In conclusion, tennis players were able to maintain constant serve speed and accuracy over five-set matches played on grass courts. Professional tennis players are capable of overcoming fatigue and/or make movement adjustments to effectively perform complex technical strokes like the serve throughout matches played on grass courts lasting more than 3?h in average.  相似文献   

16.
Running downhill, in comparison to running on the flat, appears to involve an exaggerated stretch-shortening cycle (SSC) due to greater impact loads and higher vertical velocity on landing, whilst also incurring a lower metabolic cost. Therefore, downhill running could facilitate higher volumes of training at higher speeds whilst performing an exaggerated SSC, potentially inducing favourable adaptations in running mechanics and running economy (RE). This investigation assessed the efficacy of a supplementary 8-week programme of downhill running as a means of enhancing RE in well-trained distance runners. Nineteen athletes completed supplementary downhill (?5% gradient; n?=?10) or flat (n?=?9) run training twice a week for 8 weeks within their habitual training. Participants trained at a standardised intensity based on the velocity of lactate turnpoint (vLTP), with training volume increased incrementally between weeks. Changes in energy cost of running (EC) and vLTP were assessed on both flat and downhill gradients, in addition to maximal oxygen uptake (?O2max). No changes in EC were observed during flat running following downhill (1.22?±?0.09 vs 1.20?±?0.07?Kcal?kg?1?km?1, P?=?.41) or flat run training (1.21?±?0.13 vs 1.19?±?0.12?Kcal?kg?1?km?1). Moreover, no changes in EC during downhill running were observed in either condition (P?>?.23). vLTP increased following both downhill (16.5?±?0.7 vs 16.9?±?0.6?km?h?1 , P?=?.05) and flat run training (16.9?±?0.7 vs 17.2?±?1.0?km?h?1, P?=?.05), though no differences in responses were observed between groups (P?=?.53). Therefore, a short programme of supplementary downhill run training does not appear to enhance RE in already well-trained individuals.  相似文献   

17.
Different methods of ball carrying can be used when a player runs with the ball in rugby union. We examined how three methods of ball carrying influenced sprinting speed: using both hands, under the left arm and under the right arm. These methods were compared with running without the ball. Our aim was to determine which method of ball carrying optimizes sprinting speed. Altogether, 48 rugby union players (age 21±2 years, height 1.83±0.1?m, body mass 85.3±12?kg, body fat 14?±?5%; mean±s) were recruited. The players performed twelve 30-m sprints in total (each player performed three trials under each of three methods of carrying the ball and sprinting without the ball). The design of the study was a form of Latin rectangle, balanced across the trial order for each of the methods and for pairwise combinations of the methods in blocks of four per trial. Each sprint consisted of a 10-m rolling start, followed by a 20-m timed section using electronic timing gates. Compared with sprinting 20?m without the ball (2.58±0.16?s), using both hands (2.62±0.16?s) led to a significantly slower time (P?<0.05). Sprinting 20?m with the ball under the left arm (2.61±0.15?s) or under the right arm (2.60± 0.17?s) was significantly quicker than when using ‘both hands’ (P?<0.05), and both these methods were significantly slower than when running without the ball (P?<0.05). Accordingly, running with the ball in both hands led to the greatest decrement in sprinting performance, although carrying the ball under one arm also reduced the players' sprinting ability. Our results indicate that to gain a speed advantage players should carry the ball under one arm.  相似文献   

18.
ABSTRACT

Purpose: The effect of breakfast omission on evening high-intensity exercise performance has not previously been studied. Methods: In a randomised and counterbalanced cross-over design, 10 competitive rowers (2 male, 8 female; mean?±?SD: age 21?±?2 y, height 176?±?7?cm, weight 76?±?12?kg, body fat 19.7?±?6.8%) completed two trials (individualised carbohydrate-rich breakfast (BT; 831?±?67?kcal eaten before 09:00) and no-breakfast (NBT; extended overnight fast until 12:00)). Following ad libitum afternoon food intake, participants completed a 2000-m time-trial on a rowing ergometer between 16:30 and 18:00. Appetite and energy intake were measured throughout the day, whilst power output, time, heart rate, blood lactate, blood glucose and RPE were assessed during the time trial. Results: Appetite ratings were higher throughout the morning in NBT compared with BT, but there were no differences in ratings in the afternoon. Energy intake at lunch was greater NBT compared with BT (1236?±?594 vs 836?±?303?kcal, p?<?.05), which partly compensated for breakfast omission, although overall energy intake tended to be lower in NBT compared with BT (1236?±?594 vs 1589?±?225?kcal, p?=?.08). The time taken to complete the 2000-m time trial was greater in NBT compared with BT (469.2?±?43.4 vs 465.7?±?43.3?s; p?<?.05). No differences in heart rate, blood glucose and blood lactate responses were apparent, but overall RPE was higher in NBT compared with BT (17.8?±?0.9 vs 16.7?±?0.7?au, p?<?.05). Conclusion: The omission of a carbohydrate-rich breakfast impaired evening performance during a 2000-m rowing time trial. This finding has implications for optimising evening high-intensity exercise performance.  相似文献   

19.
This study aimed to describe the body composition and physiological changes which take place during the in-season and recovery periods of a group of natural bodybuilders. Natural male bodybuilders (n?=?9) were assessed 16 (PRE16), 8 (PRE8), and 1 (PRE1) week(s) before, and 4 (POST4) weeks after a bodybuilding competition. Assessments included body composition, resting metabolic rate (RMR), serum hormones, and 7-day weighed food and training diaries. Change in parameters was assessed using repeated-measures analysis of variance. Dietary protein intake remained high throughout the study period (2.8–3.1?g?kg?1?d?1). Fat mass (FM) was significantly reduced from PRE16 to PRE1 (8.8?±?3.1 vs. 5.3?±?2.4?kg, P?.01). There was a small decrease in lean mass (LM) from PRE8 to PRE1 (71.8?±?9.1 vs. 70.9?±?9.1?kg, P?P?>?.05). Large reductions in total and free testosterone (16.4?±?4.4 vs. 10.1?±?3.6?nmol?L?1, P?. 116.8?±?76.9?pmol?L?1, P?. 19.9?±?7.6?nmol?L?1, P?. 72.5?±?8.5?kg, P?. 25.4?±?9.3?nmol?L?1, P?相似文献   

20.
The aim of the study was to compare the effect of resistance training (RT) frequencies of five times (RT5), thrice- (RT3) or twice- (RT2) weekly in muscle strength and hypertrophy in young men. Were used a within-subjects design in which 20 participants had one leg randomly assigned to RT5 and the other to RT3 or to RT2. 1?RM and muscle cross-sectional area (CSA) were assessed at baseline, after four (W4) and eight (W8) RT weeks. RT5 resulted in greater total training volume (TTV) than RT3 and RT2 (P?=?.001). 1?RM increased similarly between protocols at W4 (RT5: 55?±?9?Kg, effect size (ES): 1.18; RT3: 51?±?11?Kg, ES: 0.80; RT2: 54?±?7?Kg, ES: 1.13; P?P?2, ES: 0.54; RT3: 22.0?±?4.6?cm2, ES: 0.19; RT2: ES: 0.25; 23.8?±?3.8?cm2; P?2; ES: 0.69; RT3: 23.6?±?4.2?cm2, ES: 0.58; RT2: 25.5?±?3.7?cm2; ES: 0.70; P?2; RT3: 21.2?±?4.0?cm2; RT2: 22.9?±?3.8?cm2). Performing RT5, RT3 and RT2 a week result in similar muscle strength increase and hypertrophy, despite higher TTV for RT5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号