首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用三角形全等可证明线段相等,以及证明与线段相等有关的线段和、差、倍、分等问题;还可证明两角相等,以及证明与两角相等有关的线段平行、线段垂直等问题.例1如图,∠BAC=90°,AB=AC,F是BC上一点,BD⊥AF于D,E为AF延长线上一点,CE⊥AE,求证:DE=AE-CE.证明:∵CE⊥AE,BD⊥AF于D,∴∠AEC=∠BDA=90°.∴∠1=90°-∠3=∠2.在△AEC和△BDA中,∵∠1=∠2,∠AEC=∠BDA,AC=AB,∴△AEC≌△BDA.∴CE=AD.∵DE=AE-AD,∴DE=AE-CE.例2如图,在△ABC中,D是AB的中点,DE∥BC交AC于E,F是BC上的点,BF=DE,求证:DF∥AC.证…  相似文献   

2.
巧添辅助圆     
许多几何问题,若能恰当添出辅助圆,充分利用圆的丰富性质,便能获得简捷巧妙的解法. 例1 在△ABC中,∠ABC=∠C,∠A=100°,BE是∠B平分线,求证:AE+BE=BC.图1证明 作△ABE的外接圆交BC于D,连结ED.∵∠A=100°,AB=AC,∴∠ABC=∠C=40°.又∵BE平分∠ABC,∴∠EBD=20°,AE=DE,∴AE=DE.又∵四边形ABDE为圆内接四边形,∴∠DEC=∠ABC=40°,∴∠DEC=∠C.∴DE=DC,∴AE=CD.∵∠BDE+∠A=180°,∠A=100°,∴∠BDE=80°,∴∠BED=80°,∴BE=BD,∴BC=BE+AE. 例2 已知等腰梯形ABCD中,AD∥BC.AD=a,BC=b,AB=CD=…  相似文献   

3.
与角平分线有关的证明问题在几何学习中屡见不鲜。由于角平分线具备“角相等”和“公共边”这两个自身条件,因此,解决这类问题,常可考虑沿角平分线两侧构造全等三角形的方法。例1如图1,在△ABC中,∠BAC的外角平分线上取一点D,连结BD、CD。求证:BD+CD>AB+AC·证明:在BA延长线上截取AE=AC,连结DE.图1∵∠1=∠2,AD公用∴△ADC≌△ADE∵ED=CD在△EBD中,ED+BD>BE,∴BD+CD>AB+AC·例2如图2,△ABC中,AD平分∠BAC交BC于D,AC=AB+BD·求证:∠ABC=2∠C·证明:延长AB到E,使AE=AC,连结DE·图2∵AE=AC,∠1=∠2,AD=A…  相似文献   

4.
在数学习题教学过程中,要引导学生对一些题目用不同的思想方法,从不同的思维角度去寻找多种解法,不仅有助于培养学生灵活运用知识的能力,而且也有助于对他们发散思维的训练和创新能力的培养.例:已知AD是△ABC的角平分线,求证:BDDC=ABAC.证法一:如图1,过D作DE∥AB,交AC于E,则BDDC=AEEC.由∠1=∠2,∠1=∠3,得∠2=∠3,∴AE=DE,故AEEC=DEEC,又DEEC=ABAC,∴BDDC=ABAC.证法二:如图2,过D作DE∥AC,交AB于E,则BDDC=BEAE.由∠1=∠2,∠2=∠3,得∠1=∠3,∴DE=AE,故BEAE=BEDE,又BEDE=ABAC,∴BDDC=ABAC.证法三:如图3,过C点作CE∥AD,交BA的延长线于E,则BDDC=ABAE.由∠1=∠2,∠2=∠3,∠1=∠E,得∠3=∠E,故AE=AC,∴BDDC=ABAC.证法四:如图4,过B点作BE∥AD,交CA的延长线于E,则BDDC=AEAC.由∠1=∠2,∠1=∠3,∠2=∠E,得∠3=∠E,故AE=AB,∴BDDC=ABAC.证法五:如图5,过B点作BE∥AC,交AD的延长线于E,则BDDC=BEAC...  相似文献   

5.
与角平分线有关的几何问题在各类考试(竞赛和中考)中屡见不鲜,解决这类问题时,若能通过巧添辅助线构造全等三角形常可使问题化难为易.例1如图,在△ABC中,∠BAC的平分线交BC于D,AC=AB BD,∠C=30°,则∠ABC的度数是(江苏省初中数学竞赛题)()A.45°B.60°C.75°D.90°解:延长AB到E,使AE=AC,连接DE,∵∠1=∠2,AD=AD,∴△AED≌△ACD(SAS).∴∠E=∠C=30°.又AE=AB BE,AC=AB BD,∴BE=BD.从而∠3=∠E.∴∠ABC=2∠E=60°.故选:B.反思:若在AC上截取AF=AB,同学们考虑怎样证明?例2如图,已知在△ABC中,AB>AC,AD为∠A的…  相似文献   

6.
在证明题中,常会出现二倍角问题,此类问题往往有一定难度,需要认真分析已知与结论之间的联系,添加适当的辅助线,从而化难为易.现举例说明. 一、作倍角的平分线例1 已知:如图1,在△ABC中,∠B=2∠A,AB=2BC.求证:△ABC是直角三角形. 证明:作∠ABC的平分线BD交AC于点D,取AB的中点E,连结DE. ∵∠ABC=2∠A,∠ABC=2∠1=2∠2,∴∠A=∠1=∠2.即△ABD为等腰三角形.∵E为AB边中点,∴DE⊥AB.∵BE=12AB=BC,∠1=∠2,BD=BD,∴△BDE≌△BDC.∴∠BCD=∠BED=90°.即△ABC为直角三角形.二、构造倍角的等角…  相似文献   

7.
一、将四边形问题转化为平行四边形问题例 1.已知 :四边形 ABCD中 ,AB=DC,AC=BD,且 AD≠BC。求证 :四边形 ABCD是等腰梯形。分析 :欲证此四边形为等腰梯形 ,可由定义来证明。从已知条件可看出 ,只要证明AD∥ BC即可。由此联想到构造平行四边形即可证得。证明 :过点 D作 DE∥ A B交BC于点 E,则∠ ABC=∠ DEC。∵ AB=DC,AC=DB,BC=CB,∴△ ABC≌△ DCB。∴∠ ABC=∠ DCB,∠ DEC=∠ DCB。∴ AB=DC=DE,∵ AB∥ DE,∴四边形 ABED是平行四边形 ,∴ AD∥ BC。又∵ AD≠ BC,∴四边形 ABCD是等腰梯形。二、将四…  相似文献   

8.
如图一,在△ABC中,AD为∠BAC的平分线,则AD~2 BD·DC=AB·AC. 这就是平面几何中著名的斯库顿定理.它的证法简便. 证明:延长∠BAC的平分线AD交⊙ABC于E,连结BE.∴∠E=∠C,∠BAE=∠DAC,∵△ABE∽△ADCAB/AE=AD/AC,∴AD(AD DE)=AB·AC.即AD~2 AD·DE=AB·AC,由相交弦定理得AD·DE=BD·DC,∴AD~2 BD·DC=AB·AC.  相似文献   

9.
1.70°,110°.2.矩形,正方形.3.20cm,24cm2.4.4cm,(4+43)cm.5.112.5°.6.①②③.7.22-2.8.50°,130°.9.C.10.B.11.C.12.D.13.D.14.C.15.B.16.C.17.(1)连结AC,∵O是对角线AC的中点,OA=OC,∵∠EAO=∠FCO,∠AOE=∠COF,∴△AOE≌△COF,∴AE=CF.(2)结论仍然成立,△AOE≌△COF,∴AE=CF.18.∵AE∥FC,∴∠EAC=∠FCA.又∵∠AOE=COF,AO=CO,∴△AOE≌△COF,∴EO=FO.又EF⊥AC,∴AC是EF的垂直平分线,AF=AE,CF=CE.∵EA=EC,∴AF=AE=CE=CF,∴四边形AFCE为菱形.19.(1)AE=CF(或OE=OF;DE⊥AC;BF⊥AC;DE∥…  相似文献   

10.
一、利用全等三角形的性质证明例1 已知:如图1,D、E在线段BC上,AD=AE,BD=CE.求证:∠B=∠C.证明:∵AD=AE,∴∠1=∠2,∴∠ADB=∠AEC在△ABD和△ACE中,BD=CE,∠ADB=∠AEC,AD=AE,∴△ABD≌△ACE(SAS).∴∠B=∠C.  相似文献   

11.
1.4.2.(1)AB=CD.(2)∠AEB=∠CFD.3.12a.4.15°.5.10.6.①②.7.41a.8.①②③.9.D.10.A.11.A.12.D.13.D.14.D.15.证法一:在△BRP和△CPQ中,∵∠B=∠C=60°,BP=CQ,∠BPR=∠CQP=90°,∴△BRP≌△CPQ,∴RP=PQ.同理,PQ=QR.∴△RPQ为等力三角形.证法二:∵AB=BC=AC,∴∠B=∠C=∠A=60°.又BP=CQ=AR,∴△BRP≌△CPQ≌△AQR.∴PR=PQ=RQ.16.(1)连结AD,∵D为BC中点,△ABC为等腰三角形,∴∠DAE=∠DAF,∴△ADE≌△ADF,∴DE=DF.(2)在Rt△BDE和Rt△CDF中∠BED=∠CFD=90°,∵AB=AC,∴∠B=∠C.又ED=DF,∴…  相似文献   

12.
在△ ABC中 ,∠ C=90°,CD⊥ AB于 D,AM是∠ BAC的平分线 ,交 CD于 E,交 BC于 M,过E作 EF∥ AB交 BC于 F。求证 :CM=BF。证法一 :(运用三角形知识 )证明 :过 M作 MN⊥ AB于点 N。∵∠ 1=∠ 2 ,易证△ ACM≌△ ANM,∴CM=MN。  ( 1)又 CD⊥ ABMN⊥ AB CD∥ MN, ∠ 3=∠ 5∠ 4 =∠ 5 ∠ 3=∠ 4 CE=CM。  ( 2 )由 ( 1)、( 2 )得 CE=MN。在 Rt△ EFC和 Rt△ NBM中 ,EF∥ AB ∠ B=∠ CFE,∠ CEF=∠ MNB,CE=MN Rt△ EFC≌ Rt△ NBM,∴ CF=BM,∴ CM=BF。  证法二 :(运用四边形知识 )证明 :过 M…  相似文献   

13.
在解梯形问题时,常常需要添作辅助线,其目的就是将梯形问题转化为同学们所熟悉的平行四边形和三角形来解决.下面举例说明梯形中常用的辅助线的作法郾一、作梯形的高例1如图1,在直角梯形ABCD中,AD∥BC,∠D=∠C=90°,MA=MB,∠BMC=75°,∠AMD=45°.求证:BC=CD郾证明作AE⊥BC于E郾∵AD∥BC,∴DC=AE郾∵∠AMB=180°-75°-45°=60°,MA=MB,∴△AMB为正三角形郾∴AB=BM郾又∵∠ABE=60°+15°=75°=∠BMC,∴Rt△ABE≌Rt△BMC郾∴AE=BC郾∴BC=CD郾二、作梯形的中位线例2如图2,在梯形ABCD中,AD∥BC,AC⊥BD,垂足为O…  相似文献   

14.
三角形的中位线定理揭示了其中位线与第三边的位置关系与数量关系,巧用它可以证明若干与线段中点有关的问题. 例1 如图1,△ABC中,BD 平分∠ABC,AD BD于D,E为AC的中点, 求证:DE∥BC. 证明:延长AD交BC于F. ∵BD平分∠ABC,又AD BD 于D,∴AD=FD,又∵AE= CE,由三角形中位线定理得: DE∥FC,∴DE∥BC.  相似文献   

15.
例1已知:四边形ABCD中,对角线AC与BD交于点O,AC=BD,M、N分别是AB、CD的中点,MN交BD、AC分别于点E、F求证:OE=OF.分析:如图1,要证OE=OF,只要证∠OEF=∠OFE,即可.取AD中点G,连接MG、NG,则有MG∥BD,NG∥AC,从而有∠OEF=∠GMN,∠OFE=∠GNM,又MG=12BD,NG=21AC,而AC=BD,故有MG=NG,从而有∠GMN=∠GNM,故可得∠OEF=∠OFE.例2如图2,△ABC中,∠ACB=2∠B,AD⊥BC于点D,M是BC的中点,求证:MD=21AC.分析:取AB中点N,连出△ABC的中位线MN,则有MN=21AC,所以只要证MD=MN即可,连接ND,则ND=21AB=BN,从而…  相似文献   

16.
1.证两角相等例1 已知在等腰△ABC中,∠A=90°, 在AC上取AE=1/3AC,在AB 上取AD=2/3AB,求证∠ADE =∠EBC.(04年福建南平中考) 图1 证明如图1,设∠ADE=a,∠EBC= β,AE=BD=a,则 AD=EC=2a,AB=AC=3a, 作AP上BC,EF上BC,P、F分别为垂足, 则 EF∥AP, 所以 EF/AP=CE/CA=2/3,  相似文献   

17.
在中学数学学习过程中 ,将一些题目进行变式练习 ,有利于开阔同学们的思路 ,培养创造性思维能力 ,提高归纳、总结、发现规律的能力。图 1问题 :如图 1 ,C是线段AB上的一点 ,分别以AC、BC为边在AB的同侧作等边三角形ACD和等边三角形BCE ,边接AE、BD 求证 :AE =BD 证明 :△ACD和△BCE是等边三角形 ∠ 1 =∠ 3=6 0° ∠ACE =∠BCDAC =CD ,BC =CE △ACE≌△DCB图 2 AE =BD 变式一 :将点C改在AB的延长线上 ,如图 2。证明 :△ACD与△BCE是等边三角形 AC =CD ,BC =CE∠C =∠C △ACE≌△DCB AE =BD 变式二 :点C…  相似文献   

18.
补形解证题     
例1已知:AO是△ABC的∠A的平分线,BD垂直于AO的延长线,D是垂足.E是BC中点. 求证:DE=1/2(AB-AC). 略证:延长AC交BD的延长线于F.∵AD平分∠BAF,AD上BD,∴D为BF的中点,由E是BC中的点,得-AC=AB-AC,∴DE=1/2(AB—AC).  相似文献   

19.
《时代数学学习》2004,(6):41-42
1 .3 6.  2 .1 5或 1 7.  3 .正确 .  [提示 ]  ( 1 )先说明△ABE ≌△DCF;( 2 )再由△DCE≌△ABF得 AF=DE ,再说明△AEF≌△DFE ,有∠AFE =∠DEF .  4.( 1 )AE =CD .  [提示 ]在Rt△ACE与Rt△CBD中 ,AC =CB . 又因为∠EFC是直角 ,故∠BCD =90° -∠AEC =∠CAE . 可推得Rt△ACE ≌Rt△CBD .  ( 2 )BD =8cm .  5 .相等 . 理由 :连结BD、CE ,则在△ABD与△ACE中 , 因为AB =AC ,AD =AE ,∠DAB =∠EAC ,所以 △ABD ≌△ACE .故BD =CE ,∠DBA =∠ECA . 又在△ADC与△AEB中 ,因为AD…  相似文献   

20.
一、直接寻求相关相似三角形例1从直角三角形ABC的斜边AB的中点D引AB的垂线,分别与AC和BC的延长线交于E、F点,求证:CD2=DE·DF.分析:要证CD2=DE·DF,即证CDDE=DFCD,对照图1,易看出只要证C、D、E三点和C、D、F三点分别对应的三角形相似即可,即证△CDE∽△CDF。为此,还需证另一对角相等,易知∠A=∠F,而∠A=∠ACD,所以,∠F=∠ECD,得证。二、先寻找相等线段,替换求证式中的一条或两条线段,再寻求相关相似三角形例2CD是△ABC的∠C的平分线,它的垂直平分线和AB的延长线相交于E点,求证:DE是AE和BE的比例中项。分析:D…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号