首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aesthetic constraints allow dancers fewer technique modifications than other athletes to negotiate the demands of leaping. We examined vertical ground reaction force and knee mechanics during a saut de chat performed by healthy dancers. It was hypothesized that vertical ground reaction force during landing would exceed that of take-off, resulting in greater knee extensor moments and greater knee angular stiffness. Twelve dancers (six males, six females; age 18.9 ± 1.2 years, mass 59.2 ± 9.5 kg, height 1.68 ± 0.08 m, dance training 8.9 ± 5.1 years) with no history of low back pain or lower extremity pathology participated in the study. Saut de chat data were captured using an eight-camera Vicon system and AMTI force platforms. Peak ground reaction force was 26% greater during the landing phase, but did not result in increased peak knee extensor moments. Taking into account the 67% greater knee angular displacement during landing, this resulted in less knee angular stiffness during landing. In conclusion, landing was accomplished with less knee angular stiffness despite the greater peak ground reaction force. A link between decreased joint angular stiffness and increased soft tissue injury risk has been proposed elsewhere; therefore, landing from a saut de chat may be more injurious to the knee soft tissue than take-off.  相似文献   

2.
This study aimed to explore how asymptomatic athletes with a patellar tendon abnormality (PTA), who are at high risk of developing patellar tendinopathy, alter their landing technique and net patellar tendon loads generated in response to fatigue. Seven asymptomatic players with a PTA performed five successful vertical stop-jump trials before and after a fatigue protocol. Fatigue protocol involved participants repeatedly performing sets of 30 submaximal jump exercises on a sledge apparatus followed by 30 s rest until the task failure criteria were reached. Three-dimensional ground reaction forces, lower limb kinematics and net peak patellar tendon force were recorded during the stop-jump task. No significant between-fatigue condition differences in net patellar tendon loading, or most secondary outcome variables were observed. Only some fatigue changes were seen during the vertical landing phase. Asymptomatic PTA participants did not modify their landing technique or net patellar tendon loading during a stop-jump task in response to fatigue. The lack of between-fatigue condition differences displayed by the asymptomatic PTA participants during both landing phases suggest that these individuals may not be capable of sufficient movement variability in their landing strategies to adapt to fatigue.  相似文献   

3.
Abstract

Understanding the magnitude of forces and lower body kinematics that occur during a change of direction (COD) task can provide information about the biomechanical demands required to improve performance. To compare the magnitude of force, impulse, lower body kinematics and post-COD stride velocity produced between athletes of different strength levels during a COD task, 12 stronger (8 males, 4 females) and 12 weaker (4 males, 8 females) recreational team sport athletes were recruited. Strength levels were determined by relative peak isometric force of the dominant and non-dominant leg. All athletes performed 10 pre-planned 45° changes of direction (5 left, 5 right) while three-dimensional motion and ground reaction force (GRF) data were collected. Differences in all variables for the dominant leg were examined using a one-way analysis of variance (ANOVA) with a level of significance set at p ≤0.05. The stronger group displayed significantly faster post-COD stride velocity and greater vertical and horizontal braking forces, vertical propulsive force, vertical braking impulse, horizontal propulsive impulse, angle of peak braking force application, hip abduction and knee flexion angle compared to the weaker group. The results suggest that individuals with greater relative lower body strength produced higher magnitude plant foot kinetics and modified lower body positioning while producing faster COD performances. Future investigations should determine if strength training to enable athletes to increase plant foot kinetics while maintaining or adopting a lower body position results in a concomitant increases in post-COD stride velocity.  相似文献   

4.
运用摄像及三维力同步测试4种不同坡角的下坡跑,结果表明:下坡跑步长短于平道跑,支撑腿在离地时人体重心比着地时低,从而使单步支撑过程中下坡跑比平道跑要省能;下坡跑导致受试者的着地方式发生很大变化,使得受试者受地面作用力大小、方向与平道跑差异明显,其中垂直作用力冲击峰值随坡角增加而增加,而活动峰值变化不明显,水平制动冲量增加的幅度比驱动冲量下降的幅度要大,制动力占主导地位,这种作用效果显然是由着地腿肌肉收缩形式的改变有关,并最终导致下坡跑单步支撑过程中出现能量节省化。  相似文献   

5.
Abstract

This study assessed the reliability and validity of segment measured accelerations in comparison to front foot contact (FFC) ground reaction force (GRF) during the delivery stride for cricket pace bowlers. Eleven recreational bowlers completed a 30-delivery bowling spell. Trunk- and tibia-mounted inertial measurement units (IMUs) were used to measure accelerations, converted to force, for comparisons to force plate GRF discrete measures. These measures included peak force, impulse and the continuous force–time curve in the vertical and braking (horizontal) planes. Reliability and validity was determined by intra-class correlation coefficients (ICC), coefficient of variation (CV), Bland–Altman plots, paired sample t-tests, Pearson’s correlation and one-dimensional (1D) statistical parametrical mapping (SPM). All ICC (0.90–0.98) and CV (4.23–7.41%) were acceptable, except for tibia-mounted IMU braking peak force (CV = 12.44%) and impulse (CV = 18.17%) and trunk vertical impulse (CV = 17.93%). Bland–Altman plots revealed wide limits of agreement between discrete IMU force signatures and force plate GRF. The 1D SPM outlined numerous significant (p < 0.01) differences between trunk- and tibia-located IMU-derived measures and force plate GRF traces in vertical and braking (horizontal) planes. The trunk- and tibia-mounted IMUs appeared to not represent the GRF experienced during pace bowling FFC when compared to a gold-standard force plate.  相似文献   

6.
The ankle joint’s role in shock absorption during landing has been researched in many studies, which have found that landing with higher amounts of plantarflexion (PF) results in lower peak vertical ground reaction forces and loading rates. However, there has not yet been a study that compares drop landings within participants along a quantitative continuum of PF angles. Using a custom-written real-time feedback program, participants adjusted their ankles to an instructed PF angle and dropped onto two force platforms. For increasing PF, peak ground reaction force and peak loading rate during weight acceptance decreased significantly. The hip’s contribution to peak support moment decreased as PF at initial contact increased up to 30°. The ankle and knee contributions increased over this same continuum of PF angles. There appears to be no optimal PF angle based on peak ground reaction force and loading rate measurements, but there may be an optimum where joint contributions to peak support moment converge and the hip moment’s contribution is minimised.  相似文献   

7.
Propulsion and bracing ground reaction force (GRF) in overhand throwing are integral in propagating joint reaction kinetics and ball velocity, yet how stride length effects drive (hind) and stride (lead) leg GRF profiles remain unknown. Using a randomised crossover design, 19 pitchers (15 collegiate and 4 high school) were assigned to throw 2 simulated 80-pitch games at ±25% of their desired stride length. An integrated motion capture system with two force plates and radar gun tracked each throw. Vertical and anterior–posterior GRF was normalised then impulse was derived. Paired t-tests identified whether differences between conditions were significant. Late in single leg support, peak propulsion GRF was statistically greater for the drive leg with increased stride. Stride leg peak vertical GRF in braking occurred before acceleration with longer strides, but near ball release with shorter strides. Greater posterior shear GRF involving both legs demonstrated increased braking with longer strides. Conversely, decreased drive leg propulsion reduced both legs’ braking effects with shorter strides. Results suggest an interconnection between normalised stride length and GRF application in propulsion and bracing. This work has shown stride length to be an important kinematic factor affecting the magnitude and timing of external forces acting upon the body.  相似文献   

8.
This study aimed to investigate whether high peak ground reaction forces and high average loading rates are necessary to bowl fast. Kinematic and kinetic bowling data were collected for 20 elite male fast bowlers. A moderate non-significant correlation was found between ball speed and peak vertical ground reaction force with faster bowlers tending to have lower peak vertical ground reaction force (r = ?0.364, P = 0.114). Faster ball speeds were correlated with both lower average vertical and lower average horizontal loading rates (r = ?0.452, P = 0.046 and r = ?0.484, P = 0.031, respectively). A larger horizontal (braking) impulse was associated with a faster ball speed (r = 0.574, P = 0.008) and a larger plant angle of the front leg (measured from the vertical) at front foot contact was associated with a larger horizontal impulse (r = 0.706, P = 0.001). These findings suggest that there does not necessarily need to be a trade-off between maximum ball release speed and the forces exerted on fast bowlers (peak ground reaction forces and average loading rates). Furthermore, it appears that one of the key determinants of ball speed is the horizontal impulse generated at the ground over the period from front foot contact until ball release.  相似文献   

9.
10.
ABSTRACT

Chronic foot and ankle injuries are common in dancers; understanding how lower extremity loading changes in response to altered task goals can be beneficial for rehabilitation and injury prevention strategies. The purpose of this study was to examine mechanical demands during jump take-offs when the task goal was modified to focus on either increasing jump distance or increasing jump height. It was hypothesized that a jump strategy focused on height would result in decreased energetic demands on the foot and ankle joints. Thirty healthy, experienced female dancers performed saut de chat leaps while travelling as far as possible (FAR) or jumping as high as possible (UP). Ground reaction force (GRF) impulses and peak sagittal plane net joint moments and sagittal plane mechanical energy expenditure (MEE) of the metatarsophalangeal (MTP), ankle, knee, and hip joints were calculated. During take-off, vertical and horizontal braking GRF impulses were greater and horizontal propulsive GRF impulse was lower in the UP condition. MEE at the MTP, ankle, and hip joints was lower in UP, and MEE at the knee was higher in UP. These results suggest that a strategy focused on height may be helpful in unloading the ankle and MTP joints during dance leaps.  相似文献   

11.
Abstract

High ground reaction forces during the front foot contact phase of the bowling action are believed to be a major contributor to the high prevalence of lumbar stress fractures in fast bowlers. This study aimed to investigate the influence of front leg technique on peak ground reaction forces during the delivery stride. Three-dimensional kinematic data and ground reaction forces during the front foot contact phase were captured for 20 elite male fast bowlers. Eight kinematic parameters were determined for each performance, describing run-up speed and front leg technique, in addition to peak force and time to peak force in the vertical and horizontal directions. There were substantial variations between bowlers in both peak forces (vertical 6.7 ± 1.4 body weights; horizontal (braking) 4.5 ± 0.8 body weights) and times to peak force (vertical 0.03 ± 0.01 s; horizontal 0.03 ± 0.01 s). These differences were found to be linked to the orientation of the front leg at the instant of front foot contact. In particular, a larger plant angle and a heel strike technique were associated with lower peak forces and longer times to peak force during the front foot contact phase, which may help reduce the likelihood of lower back injuries.  相似文献   

12.
High impact forces during gymnastic landings are thought to contribute to the high rate of injuries. Lower limb joint flexion is currently limited within gymnastic rules, yet might be an avenue for reduced force absorption. This study investigated whether lower limb flexion during three gymnastic landings was related to force. Differences between landings were also explored. Twenty-one elite women's artistic gymnasts performed three common gymnastic techniques: drop landing (DL), front and back somersaults. Ankle, knee, and hip angles, and vertical ground reaction force [(vGRF) magnitude and time to peak], were measured using three-dimensional motion analysis and force platform. The DL had significantly smaller peak vGRF, greater time to peak vGRF and larger lower limb flexion ranges than landing from either somersault. Peak vGRF and time to peak vGRF were inversely related. Peak vGRF was significantly reduced in gymnasts who landed with greater hip flexion, and time to peak was significantly increased with increasing ankle, knee, and hip flexion. Increased range of lower limb flexion should be encouraged during gymnastic landings to increase time to peak vGRF and reduce high impact force. For this purpose, judging criteria limitations on lower limb flexion should be reconsidered.  相似文献   

13.
The aim of this study was to examine the effect of opposition and gender on knee kinematics and ground reaction force during landing from a volleyball block jump. Six female and six male university volleyball players performed two landing tasks: (a) an unopposed and (b) an opposed volleyball block jump and landing. A 12-camera motion analysis system (120 Hz) was used to record knee kinematics, and a force platform (600 Hz) was used to record ground reaction force during landing. The results showed a significant effect for level of opposition in peak normalized ground reaction force (p = .04), knee flexion at ground contact (p = .003), maximum knee flexion (p = .001), and knee flexion range of motion (p = .003). There was a significant effect for gender in maximum knee flexion (p = .01), knee flexion range of motion (p = .001), maximum knee valgus angle (p = .001), and knee valgus range of motion (p = .001). The changes in landing biomechanics as a result of opposition suggest future research on landing mechanics should examine opposed exercises, because opposition may significantly alter neuromuscular responses.  相似文献   

14.
The purpose of this study was to compare the lower extremity inter-joint coordination of different collision forces runners during running braking phase. A dynamical system approach was used to analyse the inter-joint coordination parameters. Data were collected with six infra-red cameras and two force plates. According to the impact peak of the vertical ground reaction force, twenty habitually rearfoot-strike runners were categorised into three groups: high collision forces runners (HF group, n = 8), medium collision forces runners (MF group, n = 5), and low collision forces runners (LF group, n = 7). There were no significant differences among the three groups in the ankle and knee joint angle upon landing and in the running velocity (p > 0.05). The HF group produced significantly smaller deviation phase (DP) of the hip flexion/extension-knee flexion/extension during the braking phase compared with the MF and LF groups (p < 0.05). The DP of the hip flexion/extension-knee flexion/extension during the braking phase correlated negatively with the collision force (p < 0.05). The disparities regarding the flexibility of lower extremity inter-joint coordination were found in high collision forces runners. The efforts of the inter-joint coordination and the risk of running injuries need to be clarified further.  相似文献   

15.
研究背景:现有研究文献尚无有关在着地过程中不同表面倾斜度和踝关节护具效应的运动学、动力学和地面反作用力的综合数据。通过对比25°斜面和平面的着地以及使用和不使用踝关节护具情况下来检测踝关节的生物力学特性。研究方法: 11名健康受试者[年龄:(24.6±3.5)岁,身高:(24.6±0.10)m,质量:(65.6±14.9)kg)参与本次研究。受试者在4个动态运动条件下各进行5五次实验:从0.45米高处垂直下落至25°的斜面(IS)或平面(FS)上,使用或不使用半刚性踝关节护具,同时采集三维运动学和测力台地面反作用力数据。利用2×2(表面X踝关节护具)的重复测量方差分析来评估选定的变量。研究结果:与平面着地相比,斜面着地造成较小的垂直和内侧地面反作用力峰值。研究还发现踝关节背曲运动范围、着地角度和背曲速度、最大外翻与跖曲角速度提高,但产生了更大内翻角度和运动范围、着地内翻速度和最大跖曲力矩。踝关节护具在斜面着地时减少了达到地面反作用力第二垂直峰值的时间、着地角度、背曲速度、最大外翻和跖曲速度,但增加了跖曲力矩的最大值。研究结论:斜面增加踝关节额状面的运动范围和踝关节负荷。但是,就斜面着地而言,踝关节护具对踝关节额状面的运动范围和踝关节负荷的影响是相当有限的。  相似文献   

16.
The players' ability to achieve the greatest distance in kicking is determined by their efficiency in transferring kinetic energy from the body to the ball. The purpose of this study was to compare the kinetics and kinematics of the plant leg position between male and female collegiate soccer players during instep kicking. Twenty-three soccer players (11 males and 12 females) were filmed in both the sagittal and posterior views while performing a maximal instep kick. Plant leg kinetic data were also collected using an AMTI 1000 force platform. There were no significant differences between the sexes in plant leg position, but females had significantly greater trunk lean, plant leg angle, and medial-lateral ground reaction force than the males. Males showed higher vertical ground reaction forces at ball contact, but there were no significant differences in ball speed at take-off between the sexes. Ball speed at take-off was inversely related to peak anterior-posterior ground reaction force (-0.65). The anatomical differences between the sexes were reflected in greater trunk lean and lower leg angle in the females.  相似文献   

17.
Abstract

The aims of this study were to: (1) assess the reliability of various kinetic and temporal variables for unilateral vertical, horizontal, and lateral countermovement jumps; (2) determine whether there are differences in vertical ground reaction force production between the three types of jumps; (3) quantify the magnitude of asymmetry between limbs for variables that were established as reliable in a healthy population and whether asymmetries were consistent across jumps of different direction; and (4) establish the best kinetic predictor(s) of jump performance in the vertical, horizontal, and lateral planes of motion. Thirty team sport athletes performed three trials of the various countermovement jumps on both legs on two separate occasions. Eccentric and concentric peak force and concentric peak power were the only variables with acceptable reliability (coefficient of variation = 3.3–15.1%; intra-class correlation coefficient = 0.70–0.96). Eccentric and concentric peak vertical ground reaction force (14–16%) and concentric peak power (45–51%) were significantly (P < 0.01) greater in the vertical countermovement jump than in the horizontal countermovement jump and lateral countermovement jump, but no significant difference was found between the latter two jumps. No significant leg asymmetries (–2.1% to 9.3%) were found in any of the kinetic variables but significant differences were observed in jump height and distance. The best single predictors of vertical countermovement jump, horizontal countermovement jump, and lateral countermovement jump performance were concentric peak vertical power/body weight (79%), horizontal concentric peak power/body weight (42.6%), and eccentric peak vertical ground reaction force/body weight (14.9%) respectively. These findings are discussed in relation to monitoring and developing direction-specific jump performance.  相似文献   

18.
The purpose of this study was to assess the effects of jumping distance on the landing mechanics after a volleyball spike, to help in injury prevention and training for safer landing. Ground reaction forces and three-dimensional kinematic data were collected from six male university right-handed volleyball players under “Normal” and “Long” jumping distance conditions of landing after a spike. The results revealed that the landings under the Long jumping distance condition produced significantly greater centre of gravity velocities and larger mean loading rates. Although data were collected for bilateral landings with the two feet contacting the force platform at the same time, landing motion was asymmetric and the left leg was considered to play a more critical role in the absorption of the landing impact. The trunk and hip positions at the initial contact with the floor and the range of motions of the knee and ankle were key kinematic parameters for reducing the vertical peak ground reaction forces and extending the time from the initial contact to the occurrence of this peak force, which consequently reduced the mean loading rate upon landing.  相似文献   

19.
ABSTRACT

The capacity of foot-strike running patterns to influence the functional properties of the Achilles tendon is controversial. This study used transmission-mode ultrasound to investigate the influence of habitual running foot-strike pattern on Achilles tendon properties during barefoot walking and running. Fifteen runners with rearfoot (RFS) and 10 with a forefoot (FFS) foot-strike running pattern had ultrasound transmission velocity measured in the right Achilles tendon during barefoot walking (≈1.1 ms?1) and running (≈2.0 ms?1). Temporospatial gait parameters, ankle kinematics and vertical ground reaction force were simultaneously recorded. Statistical comparisons between foot-strike patterns were made using repeated measure ANOVAs. FFS was characterised by a significantly shorter stance duration (?4%), greater ankle dorsiflexion (+2°), and higher peak vertical ground reaction force (+20% bodyweight) than RFS running (P < .05). Both groups adopted a RFS pattern during walking, with only the relative timing of peak dorsiflexion (3%), ground reaction force (1–2%) and peak vertical force loading rates (22–23%) differing between groups (P < .05). Peak ultrasound transmission velocity in the Achilles tendon was significantly higher in FFS during walking (≈100 ms?1) and running (≈130 ms?1) than RFS (P < .05). Functional Achilles tendon properties differ with habitual footfall patterns in recreational runners.  相似文献   

20.
Although most ACL injury prevention programmes encourage greater hip and knee flexion during landing, it remains unknown how this technique influences tibiofemoral joint forces. We examined whether a landing strategy utilising greater hip and knee flexion decreases tibiofemoral anterior shear and compression. Twelve healthy women (25.9 ± 3.5 years) performed a drop-jump task before and after a training session (10–15 min) that emphasised greater hip and knee flexion. Peak tibiofemoral anterior shear and compressive forces were calculated using an electromyography (EMG)-driven knee model that incorporated joint kinematics, EMG and participant-specific muscle volumes and patella tendon orientation measured using magnetic resonance imaging (MRI). Participants demonstrated a decrease in peak anterior tibial shear forces (11.1 ± 3.3 vs. 9.6 ± 2.7 N · kg?1; P = 0.008) and peak tibiofemoral compressive forces (68.4 ± 7.6 vs. 62.0 ± 5.5 N · kg?1; P = 0.015) post-training. The decreased peak anterior tibial shear was accompanied by a decrease in the quadriceps anterior shear force, while the decreased peak compressive force was accompanied by decreased ground reaction force and hamstring forces. Our data provide justification for injury prevention programmes that encourage greater hip and knee flexion during landing to reduce tibiofemoral joint loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号