首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
This paper presents an adaptive robust control strategy based on a radial basis function neural network (RBFNN) and an online iterative correction method (OICM) for a planar n-link underactuated manipulator with a passive first joint to realize its position control objective. An uncertain model of the planar n-link underactuated manipulator is built, which contains the parameter perturbation and the external disturbance. The adaptive robust controllers based on the RBFNN are designed to realize the model reduction, which makes the system reduce to a planar virtual three-link underactuated manipulator (PVTUM) and simplifies the complexity of the system control. An online differential evolution (DE) algorithm is used to calculate the target angles of the PVTUM based on the nominal model parameters. The control of the PVTUM is divided into two stages, and the adaptive robust controllers are still employed to realize the control objective of each stage. Then, the OICM is used to correct the deviations of all link angles of the PVTUM caused by the parameter perturbation, which makes the end-point of the system gradually approach to its target position. Finally, simulation results of a planar four-link underactuated manipulator demonstrate the effectiveness of the proposed adaptive robust control strategy.  相似文献   

2.
This paper proposes a fuzzy neural network (FNN) based on wavelet support vector regression (WSVR) approach for system identification, in which an annealing robust learning algorithm (ARLA) is adopted to adjust the parameters of the WSVR-based FNN (WSVR-FNN). In the WSVR-FNN, first, the WSVR method with a wavelet kernel function is used to determine the number of fuzzy rules and the initial parameters of FNN. After initialization, the adjustment for the parameters of FNNs is performed by the ARLA. Combining the self-learning ability of neural networks, the compact support of wavelet functions, the adaptive ability of fuzzy logic, and the robust learning capability of ARLA, the proposed FNN has the superiority among the several existed FNNs. To demonstrate the performance of the WSVR-FNN, two nonlinear dynamic plants and a chaotic system taken from the extant literature are considered to illustrate the system identification. From the simulation results, it shows that the proposed WSVR-FNN has the superiority over several presented FNNs even the number of training parameters is considerably small.  相似文献   

3.
In this paper, the target tracking control problem is investigated for an underactuated autonomous underwater vehicle (AUV) in the presence of actuator faults and external disturbances based on event-triggered mechanism. Firstly, the five degrees-of-freedom kinematic and dynamic models are constructed for an underactuated AUV, where the backstepping method is introduced as the major control framework. Then, radial basis function neural network (RBFNN) and adaptive control method are made full use of estimating and compensating the influences of uncertain information and actuator faults. Besides, the relative threshold event-triggered strategy is integrated into the tracking control to further reduce communication burden from the controller to the actuator. Moreover, through Lyapunov analysis, it is proved that the designed controllers guarantee that the tracking error variables of the underactuated AUV are uniformly ultimately bounded and can converge to a small neighborhood of the origin. Finally, the effectiveness and reasonableness of the designed tracking controllers are illustrated by comparative simulations.  相似文献   

4.
This paper investigates the fixed-time neural network adaptive (FNNA) tracking control of a quadrotor unmanned aerial vehicle (QUAV) to achieve flight safety and high efficiency. By combining radial basis function neural network (RBFNN) with fixed time adaptive sliding mode algorithm, a novel radial basis function neural network adaptive law is proposed. In addition, an extended state/disturbance observer (ESDO) is proposed to solve the problem of unmeasurable state and external interference, which can obtain reliable state feedback and interference input. Unlike most other ESO applications, this paper does not set the uncertainty model and external disturbances as total disturbances. Instead, the external disturbances are observed by extending the states and the observed states are fed back to the controller to cancel the disturbances. In view of the time-varying resistance coefficient and inertia torque in the QUAV model, the neural network is introduced so that the controller does not need to consider these nonlinear uncertainties. Finally, a numerical example is given to verify the effectiveness of the coupled non-simplified QUAV model.  相似文献   

5.
以知识联盟型虚拟企业为研究对象,针对其知识共享过程中存在的各种风险,利用模糊数学和人工神经网络技术,建立了基于模糊神经网络的知识联盟型虚拟企业风险预警模型,并对其模型进行了初步的训练及检测。  相似文献   

6.
This paper considers a class of nonlinear fractional-order multi-agent systems (FOMASs) with time-varying delay and unknown dynamics, and a new robust adaptive control technique is proposed for cooperative control. The unknown nonlinearities of the systems are online approximated by the introduced recurrent general type-2 fuzzy neural network (RGT2FNN). The unknown nonlinear functions are estimated, simultaneously with the control process. In other words, at each sample time the parameters of the proposed RGT2FNNs are updated and then the control signals are generated. In addition to the unknown dynamics, the orders of the fractional systems are also supposed to be unknown. The biogeography-based optimization algorithm (BBO) is extended to estimate the unknown parameters of RGT2FNN and fractional-orders. A LMI based compensator is introduced to guarantee the robustness of the proposed control system. The excellent performance and effectiveness of the suggested method is verified by several simulation examples and it is compared with the other methods. It is confirmed that the introduced cooperative controller results in a desirable performance in the presence of time-varying delay, unknown dynamics, and unknown fractional-orders.  相似文献   

7.
基于模糊神经网络的企业知识管理风险评价   总被引:9,自引:0,他引:9       下载免费PDF全文
 根据风险理论的相关学说,提出了企业知识管理风险的定义。在此基础上,对企业知识管理的风险因素进行了分析,构建了企业知识管理风险评价指标体系。依据评价指标模糊性的特点,将模糊数学与神经网络结合,建立了基于模糊神经网络的风险评价模型。选取13家企业作为实例说明了模糊神经网络评价模型在企业知识管理风险评价中的适用性。  相似文献   

8.
The main challenges of modular robot manipulators (MRMs) with the environmental constraints include the avoidance of catastrophic collision and the precious contacting in the whole interaction process. Consequently, an event-triggered optimal interaction control method of MRMs under the complex multi-task constraints is presented in this paper. Firstly, on the basis of the joint torque feedback (JTF) technique, the dynamic model of constrained MRM subsystem is established. Secondly, the sensorless-based decentralized nonlinear disturbance observer (NDOB) is proposed to detect and identify the sudden external collision for each joint. Then, the performance index function is improved to achieve the interaction control, which contains the fusion state variable function, the influence of external collision, the known model term, and the estimation of model uncertainties through the radial basis function neural network (RBFNN) identifier. Further, based on event-triggered mechanism and adaptive dynamic programming (ADP) algorithm, the approximate event-triggered optimal interaction control strategy is acquired by the critic neural network (NN). Next, the closed-loop MRM system is demonstrated to be uniformly ultimately bounded (UUB) through the Lyapunov stability theorem. Finally, the experiments are achieved effectively for each joint on the platform, such that the feasibility and universality of the proposed interaction control approach are testified by the experimental results.  相似文献   

9.
针对自由漂浮状态的空间机器人模型不确定性及其动力传动机构的摩擦死区非线性,将一种自适应模糊小脑模型关联控制( FCMAC)补偿策略用于轨迹跟踪及补偿问题.利用模糊神经网络并引入GL矩阵及其乘法算子“.”分别对执行机构中的摩擦死区及系统模型不确定部分进行自适应补偿,其补偿误差及外界扰动通过滑模控制器来消除.基于Lyapunov理论证明了闭环系统跟踪误差的有界性.仿真表明控制器可以达到较高精度,且能满足实时性要求.  相似文献   

10.
This paper studies the fault-tolerant model-free adaptive control (FT-MFAC) problem for a class of single-input single-output (SISO) nonlinear networked control systems (NCSs) under denial-of-service (DoS) attacks. A novel FT-MFAC framework is established with the consideration of DoS attacks and the sensor fault, in which DoS attacks obeying the Bernoulli distribution randomly happen in the sensor-to-controller channel and the sensor fault is approximated by the radial basis function neural network (RBFNN). Based on the proposed framework, an FT-MFAC algorithm that uses only input/output data is proposed to guarantee that the output tracking error is bounded in the sense of mean square. Finally, the effectiveness of the proposed algorithm is illustrated by a simulation.  相似文献   

11.
In this paper, we study the consensus tracking control problem of a class of strict-feedback multi-agent systems (MASs) with uncertain nonlinear dynamics, input saturation, output and partial state constraints (PSCs) which are assumed to be time-varying. An adaptive distributed control scheme is proposed for consensus achievement via output feedback and event-triggered strategy in directed networks containing a spanning tree. To handle saturated control inputs, a linear form of the control input is adopted by transforming the saturation function. The radial basis function neural network (RBFNN) is applied to approximate the uncertain nonlinear dynamics. Since the system outputs are the only available data, a high-gain adaptive observer based on RBFNN is constructed to estimate the unmeasurable states. To ensure that the constraints of system outputs and partial states are never violated, a barrier Lyapunov function (BLF) with time-varying boundary function is constructed. Event-triggered control (ETC) strategy is applied to save communication resources. By using backstepping design method, the proposed distributed controller can guarantee the boundedness of all system signals, consensus tracking with a bounded error and avoidance of Zeno behavior. Finally, the correctness of the theoretical results is verified by computer simulation.  相似文献   

12.
通过采用神经网络自适应逆控制方法来解决铝电解过程中存在的时变和大时滞问题,可以提高其控制性能。本文就铝电解过程进行建模,并将神经网络与自适应逆控制算法相结合,发现神经网络自适应逆控制模型的输出能很好地跟踪铝电解生产过程,控制效果好。在这里提出一个能使铝电解过程很快进入稳态、超调量较小的控制方案,提高铝电解过程的动态和稳态性能。  相似文献   

13.
In the present study, a novel technique is suggested for the adaptive non-linear model predictive control based on the fuzzy approach in three stages. In the presented approach, in the first stage, the prediction and control horizons are obtained from a fuzzy system in each control step. Another fuzzy system is employed to determine the weight factors before the optimization stage of developing new controller. The proposed controller gives the parameters of the model predictive control (MPC) in each control step in order to improve the performance of nonlinear systems. The proposed control scheme is compared with the traditional MPC and Generic Model Control for controlling MED-TVC process. The performances of the three proposed controllers have been investigated in the absence and presence of disturbance in order to evaluate the stability and robustness of the proposed controllers. The results reveal that the novel adaptive controller based on fuzzy approach performs better than the two other controllers in set-point tracking and disturbance rejection with lower IAE criteria. In addition, the average computational time for the adaptive MPC exhibits a decline of 34% in comparison with the traditional MPC.  相似文献   

14.
对中国52个高技术产业园区发展状况的部分数据及因子分析结果,建立两种具有学习能力的评价模型,用以评价中国高技术园区的发展状况。一种是基于模糊神经网络(FNN)的评价模型,可以提取描述高技术园区发展状况的模糊规则,找到发展模式;另一种是基于自组织特征映射(SOM)神经网络的评价模型,可以对高技术园区进行自动聚类,从聚类图上找到发展状况相近的高技术园区。两种模型都具有自我评价功能,产业园区或企业可方便地利用之对自身发展状况进行自我评价。  相似文献   

15.
针对电力系统对短期电力负荷预测精确性的需求,以长短期记忆算法为基础,采用差分自适应进化算法对其进一步改进,从而提出一种基于机器学习的混合算法(SaDE-LSTM)对电力负荷进行短期预测。基于我国2004—2018年间月度社会用电负荷数据,对改进后的混合算法进行性能测试,首先利用差分进化算法的自适应变异和交叉因子来优化长短期记忆算法的初始参数,在此基础上,运用寻优得到的参数训练长短期记忆算法从而得到优化后的预测结果。为证明其优越性,对同组数据采用支持向量机(SVM)、反向传播神经网络、自回归积分滑动平均等算法分别预测。各方法预测结果和真实结果对比分析证明,SaDE-LSTM算法对时间序列数据量要求较低,同时相比其他传统算法有更高的预测精度。该改进算法能够为参与电力系统调度的虚拟电厂、负荷聚合商等对小样本和高精度预测有需求的主体提供参考。  相似文献   

16.
Unmanned surface vehicles (USVs) are a promising marine robotic platform for numerous potential applications in ocean space due to their small size, low cost, and high autonomy. Modelling and control of USVs is a challenging task due to their intrinsic nonlinearities, strong couplings, high uncertainty, under-actuation, and multiple constraints. Well designed motion controllers may not be effective when exposed in the complex and dynamic sea environment. The paper presents a fully data-driven learning-based motion control method for an USV based on model-based deep reinforcement learning. Specifically, we first train a data-driven prediction model based on a deep network for the USV by using recorded input and output data. Based on the learned prediction model, model predictive motion controllers are presented for achieving trajectory tracking and path following tasks. It is shown that after learning with random data collected from the USV, the proposed data-driven motion controller is able to follow trajectories or parameterized paths accurately with excellent sample efficiency. Simulation results are given to illustrate the proposed deep reinforcement learning scheme for fully data-driven motion control without any a priori model information of the USV.  相似文献   

17.
This paper proposes a fuzzy model predictive control (FMPC) combined with the modified Smith predictor for networked control systems (NCSs). The network delays and data dropouts are problems, which greatly reduce the controller performance. For the proposed controller, the model of the controlled system is identified on-line using the Takagi – Sugeno (T-S) fuzzy models based on the Lyapunov function. There are two internal loops in the proposed structure. The first is the loop around the FMPC, which predicts the future outputs. The other is the loop around the plant to give the error between the system model and the actual plant. The proposed controller is designed for controlling a DC servo system through a wireless network to improve the system response. The practical results based on MATLAB/SIMULINK are established. The practical results are indicated that the proposed controller is able to respond the networked time delay and data dropouts compared to other controllers.  相似文献   

18.
This paper presents a new Takagi-Sugeno-Kang fuzzy Echo State Neural Network (TSKFESN) structure to design a direct adaptive control for uncertain SISO nonlinear systems. The proposed TSKFESN structure is based on the echo state neural network framework containing multiple sub-reservoirs. Each sub-reservoir is weighted with a TSK fuzzy rule. The adaptive law of the TSKFESN-based direct adaptive controller is derived by using a fractional-order sliding mode learning algorithm. Moreover, the Lyapunov stability criterion is employed to verify the convergence of the fractional-order adaptive law of the controller parameters. The evaluation of the proposed direct adaptive control scheme is verified using two case studies, the regulation problem of a torsional pendulum and the speed control of a direct current (DC) machine as a real-time application. The simulation and the experimental results show the effectiveness of the proposed control scheme.  相似文献   

19.
Auto-structuring fuzzy neural system for intelligent control   总被引:1,自引:0,他引:1  
An auto-structuring fuzzy neural network-based control system (ASFNS), which includes the auto-structuring fuzzy neural network (ASFNN) controller and the supervisory controller, is proposed in this paper. The ASFNN is used as the main controller to approximate the ideal controller and the supervisory controller is incorporated with the ASFNN for coping with the chattering phenomenon of the traditional sliding-mode control. In the ASFNS, an automatic structure learning mechanism is proposed for network structure optimization, where two criteria of node-adding and node-pruning are introduced. It enables the ASFNN to determine the nodes autonomously while ensures the control performance. In the ASFNS, all the parameters are evolved by the means of the Lyapunov theorem and back-propagation to ensure the system stability. Thus, an intelligent control approach for adaptive control is presented, where the structure and parameter can be evolved simultaneously. The proposed ASFNS features the following salient properties: (1) on-line and model-free control, (2) relax design in controller structure, (3) overall system stability. To investigate the capabilities, the ASFNS is applied to a kind of nonlinear system control. Through the simulation results the advantages of the proposed ASFNS can be validated.  相似文献   

20.
In this paper, an integrated design of data-driven fault-tolerant tracking control is addressed relying on the Markov parameters sequence identification and adaptive dynamic programming techniques. For the unknown model systems, the sequence of Markov parameters together with the covariance of innovation signal is firstly estimated by least square method. After a transformation of value function from stochastic to deterministic, a policy iteration adaptive dynamic programming algorithm is then formulated to find the optimal tracking control law. In order to eliminate the influence of unpredicted faults, an active fault-tolerant supervisory control strategy is further constructed by synthesizing fault detection, isolation, estimation and compensation. All these involved designs are performed in the data-driven manner, and thus avoid the information requirement about system drift dynamics. From the perspective of system operation management, the above integrated control scheme provides a framework to achieve the tracking performance optimization, monitoring and maintaining simultaneously. The effectiveness of these conclusions is finally verified via two case studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号