首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一、余弦定理的向量证明在任意△ABC中,a、b、c为∠A、∠B、∠C的对边,则a~2=b~2+c~2-2bccosA,b~2=a~2+c~2-2accosB,c~2=a~2+b~2-2abcosC(2011年陕西省理科(文科)第18题"叙述并证明余弦定理").(直接来原于课  相似文献   

2.
中线定理 设△ABC的∠A,∠B,∠C的对边分别为a,b,c,AD为边BC上的中线。则AD~2=1/2b~2 1/2c~2-1/4a~2。 证明 如图,由余弦定理得 c~2=AD~2 a~2/4 -2·AD·a/2cosα, b~2=AD~2 a~2/4 -2·AD·α/2cos(180°-α)。 两式相加,整理即得所证。  相似文献   

3.
设△ABC的三内角A,B,C所对的边分别为a,b,c,外接圆半径为R,则有正弦定理(a/sin A)=(b/sin B)=(c/sin C)=2R.余弦定理a~2=b~2+c~2-2bccos A,b~2\c~2+a~2-2cacos B,c~2=a~2+b~2-2abcos C.在学完正余弦定理后,老师给我们提出了这样的间题:由于正弦定理可变形为α=2Rsin A,b=2Rsin B,c=2RsinC三种形式,而余弦定理也有三种形式,因此,对于余弦定理是否也有类似于正  相似文献   

4.
性质1 如果a,b,c三个数成等比数列,则a~2b~2c~2(1/a~3 1/b~3 1/c~3)=a~3 b~3 c~3证明: ∵a,b,c成等比数列 ∴b/a=c/b 左端=a~2b~2c~2(1/a~3 1/b~3 1/c~3) =b~2c~21/a a~2c~21/b a~2b~21/c =a~3 b~3 c~3=右端性质2 如果a,b,c,d四个数成等比数列,则  相似文献   

5.
设△ABC的边和面积分别为a,b,c和△,则a~2 b~2 c~2≥3~(1/4)△. 证1 比较法.a~2 b~2 c~2-3~(1/4)△=2(b~2 c~2)-4bcosin(A 30°)≥2(b-C)~2≥0. 证2 (a~ b~2 c~2)-(3~(1/4)△)~2=(a~2 b~2 c~2)-3(a b c)(a b-C)·(b c-a)·(C d-b)=2[(a~2-b~2)~2 (b~2-c~2)`2 (c~2-a~2)~2]≥0.  相似文献   

6.
错在哪里     
1.广西贺县黄田松树冈中学黄健有来稿(邮编;542807)题 在△ABC中,a、b、c分别为三个内角A、B、C的对边,且∠C=2∠B,试证:C~2=b(a b).证明∵∠C=2∠B,∴∠A ∠B ∠C=∠A 3∠B=180°,∠A=∠180°-3∠B,∴sin∠=sin(180°-3∠B)=sin3∠B,从而有,∠A=3∠B.由此可得∠A=90°,∠B=30°,∠C=60“,∴a=2b.由勾股定理得 c~2=a~2-b~2=(a b)(a-b))=(a b)(2b—b)=b(a b).  相似文献   

7.
托勒密定理是几何中的著名定理.本文通过托勒密定理揭示—类函数的特殊性质,从而给出其值域的一种巧妙的求法.函数f(x)=aA(x) bB(x),(a≥b≥0,A(x)≥0,B(x)≥0)的定义域.为D,A~2(x) B~2(x)=d~2,(d>0为定值),那么,以AC=d为直径作圆O,如图,令AB=A(x),BC=B(x),CD=a/(a~2 b~2)~(1/2)·d=kd,DA=b/(a~2 b~2)~(1/2)·d=hd.则四边形ABCD内接于圆O,且f(x)=(a~2 b~2)~(1/2)·(AB·CD BC·DA)/d  相似文献   

8.
定理1 欲证 P≥Q,只需证 P Q≥2Q.例1 (《数学通报》数学问题解答1602)已知 a,b,c∈R_ ,求证:((a b)/(a c))a~2 ((b c)/(b a))b~2 ((c a)/(c b))c~2≥a~2 b~2 c~2 .证明:不等式可化为P=a~3b~2 b~3c~2 c~3a~2≥a~2b~2c ab~2c~2 a~2bc~2≥Q.P Q=(a~3b~2 ab~2c~2) (b~3c~2 a~2bc~2) (c~3a~2  相似文献   

9.
公式(a+b+c)(a~2+b~2+c~2-ab-bc-ca)=a~3+b~3+c~3-3abc(以下记为公式)有不少应用。而公式本身的证明并不困难,运用整式乘法或因式分解就可予以证明,这是初中一年级学生就能接受的。如果在初中代数教学中,讲解整式乘法时就把它提出来,到因式分解时再次熟悉,后继内容的教学中不断应用,这对学生掌握知识,发展智能会有裨益的。一、公式的征明: 证一:将左边按a的降幂排列左边=[a+(b+c)][a~2-(b+c)a+(b~2+c~2-bc)] =a~3-(b+c)a~2+(b~2+c~2-bc)a+(b+a)a~2-(b+c)~2a+(b+c)(b~2-a~2-bc) =a~3+(b~2+c~2-bc-b~2-2bc-c~2)a+b~2+c~3 =a~3+b~3+c~2-3abc。证二、用因式分解右边=(a+b)~3-3ab(a+b)+c~3-3abc =(a+b)~3+c~3-3ab(a+b+c) =(a+b+c)~3-3c(a+b)(a+b+c)  相似文献   

10.
正弦定理和余弦定理是架起三角形边角关系的两座桥梁,是解三角形的两个有力武器,锐不可当.重点难点1.正弦定理:a/(sinA)=b/(sinB)=c/(sinC)=2R(R表示△ABC外接圆的半径).2余弦定理:a~2=b~2+c~2-2bccosA;b~2=c~2+a~2-2cacosB:c~2=a~2+b~2-2abcosC.3.三角形面积公式:S=1/2ah_a(h_a  相似文献   

11.
第36届IMO第2题,可推广得如下四个命题: 命题1 设a、b、c∈R~ ,且abc=1,则1/a~3(b c) 1/b~3(c a) 1/c~3(a b)≥1/2(bc ca ab)(1),当且仅当a=b=c=1时等式成立。 证 易知(2)等价于b~2c~2/a(b c) c~2a~2/b(c a) a~2b~2/c(a b)≥1/2(bc ca ab)(2)。由平均值不等式可得: b~2c~2 (1/4)a~2(b c)~2≥abc(b C), ∴b~2c~2≥abc(b c)-(1/4)a~2(b c)~2,  相似文献   

12.
△=b~2-4ac 叫做一元二次方程 ax~2 bx c=0(a≠0)的根的判别式,其性质是《代数》的重要内容,在初中阶段有着广泛应用,现举例说明如下。一、不解方程,判断或证明一元二次方程的根的情况例1.在△ABC 中,∠C为直角,设 a、b、c 分别为∠A、∠B、∠C 的对边,试判断方程 x~2-2(a-b)x (c~2-ab)=0的根的情况。解:∵a、b、c 为正实数,且 a~3 b~2=c~2,∴Δ=[2(a-b)]~2-4(c~2-ab)=-4ab<0∴方程没有实数根。二、根据一元二次方程的根的情况,确定方程中字母  相似文献   

13.
和面积在平面几何中的地位相当,体积在立体几何中也有一番妙用。举例说明如下。一利用体积求点到平面的距离例1 长方体ABCD-A_1B_1C_1D_1中,AB=a,BC=b,BB_1=c,求顶点B_1到截面A_1BC_1的距离。解由题设,长方体AC_1中,AB=a,BC=b,BB_1=c, ∴A_1B=(a~2+c~2)~(1/2),BC_1=(b~2+c~2)~(1/2),A_1C_1=(a~2+b~2)~(1/2) 故cos∠BA_1C_1=((A_1B)~2+(A_1C_1)~2-(BC_1)~2)/(2A_1B·A_1C_1)=(a~2+c~2+a~2+b~2-b~2-c~2)/(2((a~2+c~2)~(1/2))·(a~2+b~2)~(1/2))=(a~2)/((a~2+c~2)~(1/2)·(a~2+b~2)~(1/2))sin∠BA_1C_1=(1-(a~4)/(a~2+c~2)(a~2+b~2))~(1/2)=(a~2b~2+b~2c~2+c~2a~2)~(1/2)/((a~2+c~2)~(1/2)·(a~2+b~2)~(1/2))  相似文献   

14.
a+b+c=0(a,b,c∈R),有许多简捷、优美的结论,且有着广泛的用途.结论1 若 a+b+c=0,则 b~2≥4ac 或a~2≥4bc 或c~2≥4ab.证明:因为 a+b+c=0,所以 b=-(a+c),b~2=(a+c)~2=a~2+c~2+2ac≥2ac+2ac=4ac,即 b~2≥4ac.同理可得,a~2≥4bc,c~2≥4ab.结论2 若 a+b+c=0,则 a~3+b~3+c~3=3abc.证明:因为 a+b+c=0,所以 a+b=-c,(a+b)~3=-c~3,即 a~3+3a~2b+3ab~2+b~3+c~3=0,也即 a~3+3ab·(a+b)+b~3+c~3=0,又 a+b=-c,所以 a~3+b~3+c~3  相似文献   

15.
已知a、b、c是△ABC的三条边,如果∠C=90°,那么a~2+b~2=c~2, (1)如果∠C≠90°,那么a~2=b~2+c~2-2bccosA, (2)由正弦定理, a=2RsinA,b=2RsinB,c=2RsinC分别代入(1),(2)可得 sin~2A+sin~2B=sin~2C, (3) sin~2A=sin~2B+sin~2C-2sinBsinCcosA。(4) 上面(1),(2)是我们熟知的勾股定理和余弦定理,而(3),(4)是由正弦定理推导出来的含角(不含边)的关系式,类似勾股定理和余弦定理(实际上是和勾股定理、余弦定理等价)的形式,不妨称之为“角形式的勾股定理和余弦定理”。应用这两个定理,可使某些数  相似文献   

16.
第十三届(1953牛)普特南数学竞赛有这样一道试题: 设实数a,b,c中任意两个之和大于第三个,求证 2/3(a+b+c)(a~2+b~2+c~2) >a~3+b~3+c~3+abc. (1) 事实上,我们有命题设实数a,b,c中任意两个之和大于第二个,则 2/3(a+b+c)(a~2+b~2+c~2) ≥a~3+b~3+c~3+3abc. (2)当且仅当a=b=c时等号成立. 证明:不难验证,(2)式等价于 (b+c-a)(c+a-b)(a+b-c)  相似文献   

17.
我们记P(a、b、c)=a~3+b~3+c~3-3abc这个多项式的因式分解公式为: P(a、b、c)=a~3+b~3+c~3-3abc=(a+b +c)(a~2+b~2+c~2-ab-bc-ca), 这个公式在因式分解中,在多项式的恒等变换中以及在解方程中都有一定的应用。  相似文献   

18.
定理 对任意实数a、b、c、d有 (a~2 b~2 c~2 d~2)~2 ≥(-a b c d)(a-b c d) ·(a b-c d)(a b c-d),①当且仅当a=b=c=d>0时等号成立.  相似文献   

19.
一法多用     
对形如x~2=y~2 k·z形式的结论的几何题,可把上式变形为k·z=(x y)(x-y),这样就可以应用圆的相交弦定理或圆的割线定理证明.下面就以例题来加以说明:例1:已知在△ABC中,∠B=2∠A,求证:AC~2=BC~2 BC·AB分析:由AC~2=BC~2 BC·AB变形得:BC·AB=AC~2-BC~2=(AC BC)(AC-BC)这样就可以以C为圆心,以BC或AC为半径作圆,利用圆的相交弦定理或圆的割线定理来证明.证明:如图1-(1)示:由于∠B=2∠A,则AC>BC,作以C为圆心,BC为半径的圆,分别交AC及其延长线于D、E,交AB于F点,则:AD=AC-CD=AC-BC,AE=AC CE=AC BC  相似文献   

20.
文[1]提到这样一组题:已知a,b,c为正数,求证: (1)(a~2 b~2 ab)~(1/2) (b~2 c~2 bc)~(1/2)>(c~2 a~2 ca)~(1/2); (2)(a~2 b~2)~(1/2) (b~2 c~2)>(c~2 a~2)~(1/2); (3)(a~2 b~2-ab)~(1/2) (b~2 c~2-bc)~(1/2)>(c~2 a~2-ca)~(1/2); (4)(a~2 b~2-ab)~(1/2) (b~2 c~2-bc)~(1/2)≥(c~2 a~2-ca)~(1/2). 并巧妙地利用复数证明了(4)。受文[1]的启发,本文将给出上述各不等式的构图证明,以及两个一般性的结论。 在下文中,记OA=a,OB=b,OC=c。 证明 (1)如图1,设∠AOB=∠BOC=∠COA=(2π)/3,由余弦定理知AB=(a~2 b~2 ab);…,再由AB BC>CA知  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号