首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
题目 (2017年高考全国Ⅱ卷文科数学第23(Ⅱ)题)已知a>0,b>0,a3 +b3=2.证明:a+b≤2. 证法1不等式的变形. 因为a>0,b>0,a3 +b3=2, 所以a+b>0,且(a-b)2≥0. 从而(a+b)(a-b)2≥0,即有 a2b+ab2≤a3 +b3=2. 不等式两边同乘以3得 3a2b+3ab2≤6.不等式两边同加a3+b3得 a3 +b3 +3a2b+3ab2≤8,即 (a+b)3≤8,所以a+b≤2. 证法2反证法.  相似文献   

2.
《中等数学》2014,(11):10-14
第一题 设实数a、b、c满足a+b+c=1,abc>0.证明: ab+ bc+ ca<a/2abc+1/4. 证法1 因为abc>0,所以,a、b、c三个数要么为一个正数和两个负数,要么均为正数. 对于前一种情形,不妨设a>0,b<0,c<0. 则 ab+ bc+ ca=ab+c(a+b)=ab+c(1-c) <0<abc/2+1/4. 对于后一种情形,由舒尔不等式有 a(a-b)(a-c)+b(b-a)(b-c)+c(c-a)(c-b) ≥0 (→)j(a +b +c)3-4(a +b +c)(ab +bc +ca) +9abc ≥0.① 记p =ab +bc +ca,q=abc. 由式①及a+b+c=1,得1-4p +9q≥0. 从而,p≤9q/4+1/4. 因为q=abc≤(a+b/3+c)3=1/27,所以, √q≤√1/3<2/9. 于是,9q<2√q. 故p≤9q/4+1/4<2√q/4+1/4=√q/2+1/4 (→) ab+bc+ca<√abc+1/4.  相似文献   

3.
在中学数学教学研究的期刊上常出现下述平均值不等式: 设以a,b∈(0,+∞),则a2+b2/a+b≥√a2+b2/2≥a+b/2≥√ab≥2ab/a+b. 本文将给出这五个平均值不等式之间的“问距”大小关系. 命题 设a,b∈(0,+∞),记△1=a2+b2/2-√a2+b2/2,△2=√a2+b2/2-a+b/2,△3=a+b/2-√ab,△4=√ab-2ab/a+b,则△3≥△1≥△2≥△4.等号当且仅当a=b时成立.  相似文献   

4.
先证明对于任意正实数a,b都有a+b≥2(ab)1/2.证明:a,b都大于0,所以(a1/2-b1/2)2≥0,所以a-2(ab)1/2+b≥0,所以a+b≥2(ab)1/2.当a=b时,a+b=2(ab)1/2.  相似文献   

5.
一、等式与不等式的转化例1若正数a,b满足ab=a+b+3,则ab的取值范围是______.分析为了求ab的取值范围,只要将原等式转化为不等式即可.解运用不等式a+b≥2ab姨,原等式可化为不等式.∵ab=a+b+3≥2ab姨+3,∴ab-2ab姨-3≥0.又ab姨>0,∴ab姨≥3,即ab≥9.例2已知不等式a2+b2+c2+4≤ab+3b+2c,求正整数a,b,c.分析本题所给的是不等式,而求的是a,b,c,故应将原不等式转化为3个等式,才能解决问题.解∵不等式的两边是整数,∴将a2+b2+c2+4≤ab+3b+2c配方得(a-b2)2+3(b2-1)2+(c-1)2≤0.则有a-b2=0,b2-1=0,c-1=0,∴原不等式有唯一的一组解a=1,b=2,c=1.二、常…  相似文献   

6.
人教版必修五给出了基本不等式a+b/2≥√ab(a>0,b>0),当且仅当a=b时取等号。其变形有:(a+b/2)^2≥ab;a^2+b^2≥1/2(a+b)^2。  相似文献   

7.
<正>本文先给出基本不等式的一个等价变形,再举例说明它的广泛应用.结论已知a、b、λ∈R,且b(a+b)> 0,则有ab≥-λ2+(λ+1)2+(λ+1)2a/(a+b),(*)当且仅当a=λb时取等号.证明由不等式a2a/(a+b),(*)当且仅当a=λb时取等号.证明由不等式a2+λ2+λ2b2b2≥2λab,得a2≥2λab,得a2≥2λab-λ2≥2λab-λ2b2b2.两边同时加上ab并整理,得a(a+b)≥b[(2λ+1) a-λ2.两边同时加上ab并整理,得a(a+b)≥b[(2λ+1) a-λ2b].再两边同时  相似文献   

8.
本文通过具体例题总结了基本不等式求一类题型(x+y)(a/x+b/y)(x,y,a,b都是正数)的最值.苏教版必修五给出了基本不等式的形式:ab1/2≤(a+b)/2(a≥0,b≥0),当且仅当a=b时取等号,其变形形式有a+b≥2ab1/2基本不等式的一个运用就是求最值:①当a≥0,b≥0时,若和a+b为定值P,则积ab有最大值ab≤p2/4,当且仅当a=b时取等号;②当a≥0,b≥0时,若积ab为定值S,则和a+b有最小值a+b≥2S1/2,当且仅当a=b时取等号.我们来看下面3个问题:问题1:已知x,y为正数,求(x+y)(1/x+4/y)的最小值.问题2:已知z,y为正数且满足1/x+1/y=2,求x+2y的最小值.  相似文献   

9.
《数学通报》2010年第8期问题1869如下: 问题1869[1]设a,b>0. (Ⅰ)若a+b≤√2,则1/1+a2++1/1+ b2≥1/1+(a+b)2 (1) 当且仅当a=b=√2/2时等号成立; (Ⅱ)若ab≥1/2,则1/1+a2++1/1+ b2≤1/1+(a+b)2 (2) 当且仅当a=b=√2/2时等号成立.  相似文献   

10.
我们知道,对于任意的实数a和b,有a2+ b2≥2ab(1)当且仅当a=b时取等号,若ab >0,在(1)的两边同除以ab,即得a/b+b/a≥2(2),当且仅当a=b时取等号. 在(1)中,若令u=a2,v=b2,显然u≥0, v≥0。则有,当且仅当u=v时取等号,现在我们利用这些重要不等式来解一  相似文献   

11.
1简单结论 若a,b均为正数,则有 a3 +b3≥a2b+ab2.(1) 这是一道容易的试题,只要作差即可得证,证明过程如下: a3 +b3-a2b-ab2 =(a2-b2)(a-b) =(a+b)(a-b)2≥0. 当且仅当a=b时上述等号成立.我们把它称为结论(1). 2精彩应用 案例1 (2017年高考全国Ⅱ卷文科数学试题)已知a>0,b>0,a3 +b3 =2,证明:a+b≤2.  相似文献   

12.
错在哪里?     
佟成军 《中学数学教学》2013,(2):F0004-F0004
题目 已知函数f(x)=[lgx],若0<a<b,且f(a)=f(b),求a+2b的取值范围. 错解 由f(a)=f(b),,且0<a<b,得ab=1. 所以a+2b≥2√2ab=2√2,但是因为0<a<b,所以0<a<2b,故等号不成立, 因此a+2b> 2√2,即a+2b的取值范围为(2√2,+∞). 解答错了!错在哪里?  相似文献   

13.
<正>1.知识具备x2≥0→(a-b)2≥0→a2+b2-2ab≥0,即:(1)a2+b2≥2ab,注意乘积为定值,平方和有最小值,当且仅当a=b时取等号.(2)ab≤a2+b22,注意平方和为定值,乘积有最大值,当且仅当a=b时取等号.若a、b∈R+,则有:(3)a+b≥2 ab%姨,乘积为定值,和有最小值,当且仅当a=b时取等号.(4)ab≤(a+b2)2,和为定值,乘积有最大值,当且仅当a=b  相似文献   

14.
基本不等式a2+b2≥2ab在不等式的证明中起重要作用,但有些不等式直接用它去证明比较困难,而应用该不等式的变形去证明却比较方便. 变形1a2+b2≥2ab a2+b2≥1/2(a+b)2. 例 1 已知 a,b,c∈R+,且a+b+c=5,a2+b2+c2=9,试证明:1≤a、b、c≤7/3. 证明:由已知 a+b=5-c,a2+b2≥9-c2,∵a2+b2≥1/2(a+b)2,∴9-c2≥1/2(5-c)2,∴3c2-10c+7≤0,∴1≤c≤7/3,同理1≤a≤7/3,1≤b≤7/3. 例2 设a,b∈R+,且a+b=1,求证:(a+1/2)2+(b+1/b)2≥25/2.  相似文献   

15.
基本不等式(a+b2 ≥ ab)成立的前提条件是a>0,b>0,常用变形式有(a+b≥2ab和ab≤(a+b2 )2),取等号的条件是当且仅当a=b.在求解有关代数式或函数的最小值问题时,若能灵活运用基本不等式及其变式,往往可获得巧思妙解.  相似文献   

16.
求代数式的最大值及最小值是初中考试中经常出现的题目,它的解法灵活多样,不可一概而论,下面就初中阶段较常见的解法举例说明,以便同学们复习参考.一、配方法例1设a、b为实数,那么a2+ab+b2-a-2b的最小值是___.解:a2+ab+b2-a-26=a2+(b-1)a+b2-2b=(a+b-1/2)2+3/4(b-1)2-1因为(a+b-1/2)2≥0,3/4(b-1)2≥0,  相似文献   

17.
人教版"不等式"里有一道习题:证明不等式"a2+b2+c2≥ab+bc+ca".证明过程如下:因为a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,所以2a2+2b2+2c2≥2ab+2bc+2ca,即a2+b2+c2≥ab+bc+ca."a2+b2+c2≥ab+bc+ca"是一个很重要的不等式,有着广泛的应用.  相似文献   

18.
在解题过程中 ,我们经常遇到形如a +b +c =0的条件 ,笔者在教学中发现 ,在此条件下有许多简捷、优美的结论 ,且有着广泛的应用。为此 ,本文探讨在条件a +b+c=0下的结论及相应的解题功能 ,供参考。1 结论结论 1 若a +b +c =0 ,则b2 ≥ 4ac或a2 ≥ 4bc或c2 ≥ 4ab。证明 因为a +b +c=0 ,所以b =-(a +c) ,b2 =(a +c) 2 =a2 +c2 +2ac≥ 2ac+2ac=4ac ,即b2 ≥ 4ac,同理可得a2 ≥ 4bc,c2 ≥ 4ab ,命题得证。结论 2 若a +b+c=0 ,则a3+b3+c3=3abc。证明 因为a +b +c=0 ,所以有a +b =-c,(a +b) 3=-c3,即a3+3a2 b +3ab2 +b3+c3=0 ,也即a3+3ab(a +…  相似文献   

19.
正基本不等式:1/2(ab)≤(a+b)/2(其中a≥0,b≥0)当且仅当a=b时等号成立,当1/2(ab)=(a+b)/2,此时即1/2(1/2a-1/2b)2=0,可看出a=b.a=b一方面可看作不等式成立的特殊情况,另一方面也可看作恒等式成立的条件.基本不等式等号成立的条件有两个:①两数非负,②两数相等,这就说明基本不等式等号成立对条件有着较强的要求.反过来如果基本  相似文献   

20.
命题:已知a〉0,b〉0,求证: √a^2+b^2/2≥a+b/2≥√ab≥2ab/a+b,当且仅当a=b时等号成立.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号