首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Abstract

This study investigates the effect of running shoes’ aging on mechanical and biomechanical parameters as a function of midsole materials (viscous, intermediate, elastic) and ground inclination. To this aim, heel area of the shoe (under calcaneal tuberosity) was first mechanically aged at realistic frequency and impact magnitudes based on a 660 km training plan. Stiffness (ST) and viscosity were then measured on both aged and matching new shoes, and repercussions on biomechanical variables (joint kinematics, muscular pre-activation, vertical ground reaction force and tibial acceleration) were assessed during a leg-extended stepping-down task designed to mimic the characteristics of running impacts. Shoes’ aging led to increased ST (means: from 127 to 154 N ? mm?1) and decreased energy dissipation (viscosity) (means: from 2.19 to 1.88 J). The effects induced by mechanical changes on body kinematics were very small. However, they led with the elastic shoe to increased vastus lateralis pre-activation, tibial acceleration peak (means: from 4.5 g to 5.2 g) and rate. Among the three shoes tested, the shoe with intermediate midsole foam provided the best compromise between viscosity and elasticity. The optimum balance remains to be found for the design of shoes regarding at once cushioning, durability and injury prevention.  相似文献   

2.
This study investigated the effects of body mass and shoe midsole hardness on kinetic and perceptual variables during the performance of three basketball movements: (1) the first and landing steps of layup, (2) shot-blocking landing and (3) drop landing. Thirty male basketball players, assigned into “heavy” (n = 15, mass 82.7 ± 4.3 kg) or “light” (n = 15, mass 63.1 ± 2.8 kg) groups, performed five trials of each movement in three identical shoes of varying midsole hardness (soft, medium, hard). Vertical ground reaction force (VGRF) during landing was sampled using multiple wooden-top force plates. Perceptual responses on five variables (forefoot cushioning, rearfoot cushioning, forefoot stability, rearfoot stability and overall comfort) were rated after each movement condition using a 150-mm Visual Analogue Scale (VAS). A mixed factorial analysis of variance (ANOVA) (Body Mass × Shoe) was applied to all kinetic and perceptual variables. During the first step of the layup, the loading rate associated with rearfoot contact was 40.7% higher in the “heavy” than “light” groups (= .014) and 12.4% higher in hard compared with soft shoes (= .011). Forefoot peak VGRF in a soft shoe was higher (= .011) than in a hard shoe during shot-block landing. Both “heavy” and “light” groups preferred softer to harder shoes. Overall, body mass had little effect on kinetic or perceptual variables.  相似文献   

3.
Shoe manufacturers launch running shoes with increased (e.g., maximalists) or decreased (e.g., minimalists) midsole thickness and claim that they may prevent running injury. Previous studies tested footwear models with different midsole thicknesses on the market but the shoe construct was not strictly comparable. Therefore, in the present study, we examined the effect of midsole thickness, from 1-mm to 29-mm, in a standard test shoe prototype on the vertical loading rates, footstrike angle and temporal spatial parameters in distance runners. Fifteen male habitual rearfoot strikers were recruited from local running clubs. They were asked to run on an instrumented treadmill in shoes with different midsole thicknesses. We found significant interactions between midsole thickness with vertical loading rates (< 0.001), footstrike angle (= 0.013), contact time (< 0.001), cadence (= 0.003), and stride length (= 0.004). Specifically, shoes with thinner midsole (1- and 5-mm) significantly increased the vertical loading rates and shortened the contact time, when compared with thicker midsole shoes (25- and 29-mm). However, we did not observe any substantial differences in the footstrike angle, cadence and stride length between other shod conditions. The present study provides biomechanical data regarding the relationship between full spectrum midsole thicknesses and running biomechanics in a group of rearfoot strikers.  相似文献   

4.
In this study, we evaluated the protective functions of cloth sport shoes, including cushioning and lateral stability. Twelve male students participated in the study (mean ± s: age 12.7 ± 0.4 years, mass 40.7 ± 5.9 kg, height 1.50 ± 0.04 m). Cloth sport shoes, running shoes, basketball shoes, cross-training shoes, and barefoot conditions were investigated in random sequence. Human pendulum and cutting movement tests were used to assess cushioning performance and lateral stability, respectively. For cushioning, the running shoes (2.06 body weight, BW) performed the best, while the cross-training shoes (2.30 BW) and the basketball shoes (2.37 BW) both performed better than the cloth sport shoes (2.55 BW) and going barefoot (2.63 BW). For the lateral stability test, range of inversion–eversion was found to be from 3.6 to 4.9°, which was far less than that for adult participants (> 20°). No significant differences were found between conditions. All conditions showed prolonged durations from foot-strike to maximum inversion (66–95 ms), which was less vigorous than that for adult participants ( < 40 ms) and was unlikely to evoke intrinsic stability failure. In conclusion, the cloth sport shoe showed inferior cushioning capability but the same lateral stability as the other sports shoes for children.  相似文献   

5.
ABSTRACT

This study examined the effect of wearing time on comfort perception and landing biomechanics of basketball shoes with different midsole hardness. Fifteen basketball players performed drop landing and layup first step while wearing shoes of different wearing time (new, 2-, 4-, 6- and 8-week) and hardness (soft, medium and hard). Two-way ANOVA with repeated measures was performed on GRF, ankle kinematic and comfort perception variables. Increased wearing time was associated with poorer force attenuation and comfort perception during landing activities (p < 0.05). The new shoes had significantly smaller forefoot (2- and 4-week) and rearfoot peak GRF impacts (all time conditions) in drop landing and smaller rearfoot peak GRF impact (6- and 8-week) in layup; shoes with 4-week of wearing time had significantly better perceptions of forefoot cushioning, forefoot stability, rearfoot cushioning, rearfoot stability and overall comfort than the new shoes (p < 0.05). Compared with hard shoes, the soft shoes had better rearfoot cushioning but poorer forefoot cushioning (p < 0.05). Shoe hardness and wearing time would play an influential role in GRF and comfort perception, but not in ankle kinematics. Although shoe cushioning performance would decrease even after a short wearing period, the best comfort perception was found at 4-week wearing time.  相似文献   

6.
The purpose of this study was to determine if minimalist shoes improve time trial performance of trained distance runners and if changes in running economy, shoe mass, stride length, stride rate and footfall pattern were related to any difference in performance. Twenty-six trained runners performed three 6-min sub-maximal treadmill runs at 11, 13 and 15 km·h?1 in minimalist and conventional shoes while running economy, stride length, stride rate and footfall pattern were assessed. They then performed a 5-km time trial. In the minimalist shoe, runners completed the trial in less time (effect size 0.20 ± 0.12), were more economical during sub-maximal running (effect size 0.33 ± 0.14) and decreased stride length (effect size 0.22 ± 0.10) and increased stride rate (effect size 0.22 ± 0.11). All but one runner ran with a rearfoot footfall in the minimalist shoe. Improvements in time trial performance were associated with improvements in running economy at 15 km·h?1 (r = 0.58), with 79% of the improved economy accounted for by reduced shoe mass (P < 0.05). The results suggest that running in minimalist shoes improves running economy and 5-km running performance.  相似文献   

7.
Abstract

Twelve participants ran (9 km · h?1) to test two types of running shoes: replica and original shoes. Ground reaction force, plantar pressure and electromyographic activity were recorded. The shoes were tested randomly and on different days. Comparisons between the two experimental conditions were made by analysis of variance (ANOVA) test (P ≤ 0.05). The time to first peak, loading rate of the first peak and impulse of the first 75 ms of stance were significantly different between the shoes (P ≤ 0.05), revealing an increase of impact forces for the replica shoes. The peak plantar pressure values were significantly higher (P ≤ 0.05) when wearing replica shoes. During running, the contact area was significantly smaller (P ≤ 0.05) for the replica shoe. The electromyographic activity of the analysed muscles did not show changes between the two shoes in running. These findings suggest that the use of replica running shoes can increase the external load applied to the human body, but may not change the muscle activity pattern during locomotion. This new mechanical situation may increase the risk of injuries in these movements.  相似文献   

8.
Abstract

It is currently not known whether human responses across typical sports surfaces are dependent on cushioning or frictional properties of the interface. The present study assessed systematic changes in surface cushioning (baseline acrylic, rubber, thin foam, and thick foam) as participants performed tennis running forehand foot plants wearing a basic neutral shoe (plimsolls). It was hypothesized that systematic decreases in peak rates of loading, heel pressures, and perceived hardness would be yielded as surface cushioning increased (impact test device). A common acrylic top surface provided consistent frictional properties across surfaces. Kinetics (AMTI, 960 Hz and Footscan Pressure Insoles, 500 Hz), kinematics (Peak MOTUS, 120 Hz), and cushioning perception were assessed. Peak and mean loading rates of vertical ground reaction force, peak horizontal force, peak heel pressure, and rates of loading demonstrated significant correlations (P < 0.05) with the participants' perceived levels of cushioning and matched mechanical rankings of surface cushioning. In contrast, peak impact force was lowest on the least cushioned surface. Kinematic responses were not significantly different between surfaces. Present evidence supports ‘‘peak rate of loading'' as a more suitable indicator of surface cushioning than peak impact force. Although cautionary, biomechanical support is also provided for mechanical methods of surface cushioning assessment.  相似文献   

9.
BackgroundCompared to conventional racing shoes, Nike Vaporfly 4% running shoes reduce the metabolic cost of level treadmill running by 4%. The reduction is attributed to their lightweight, highly compliant, and resilient midsole foam and a midsole-embedded curved carbon-fiber plate. We investigated whether these shoes also could reduce the metabolic cost of moderate uphill (+3°) and downhill (–3°) grades. We tested the null hypothesis that, compared to conventional racing shoes, highly cushioned shoes with carbon-fiber plates would impart the same ~4% metabolic power (W/kg) savings during uphill and downhill running as they do during level running.MethodsAfter familiarization, 16 competitive male runners performed six 5-min trials (2 shoes × 3 grades) in 2 Nike marathon racing-shoe models (Streak 6 and Vaporfly 4%) on a level, uphill (+3°), and downhill (–3°) treadmill at 13 km/h (3.61 m/s). We measured submaximal oxygen uptake and carbon dioxide production during Minutes 4–5 and calculated metabolic power (W/kg) for each shoe model and grade combination.ResultsCompared to the conventional shoes (Streak 6), the metabolic power in the Vaporfly 4% shoes was 3.83% (level), 2.82% (uphill), and 2.70% (downhill) less (all p < 0.001). The percent of change in metabolic power for uphill running was less compared to level running (p = 0.04; effect size (ES) = 0.561) but was not statistically different between downhill and level running (p = 0.17; ES = 0.356).ConclusionOn a running course with uphill and downhill sections, the metabolic savings and hence performance enhancement provided by Vaporfly 4% shoes would likely be slightly less overall, compared to the savings on a perfectly level race course.  相似文献   

10.
ABSTRACT

Ultra-cushioning (ULTRA) shoes are new to the running shoe market. Several studies have evaluated kinematics and kinetics while running in ULTRA shoes, however it remains unknown how such shoes influence joint coordination. Therefore, the purpose of this study was to evaluate lower extremity coordination and coordination variability when running in minimalist (MIN), traditional (NEUT) and ULTRA shoes. Fifteen runners ran for ten minutes in each shoe type. Coordination patterns and coordination variability were assessed for rearfoot-tibia, rearfoot-knee, and tibia-knee couplings using a modified vector coding method during early, mid, and late stance periods. During late stance ULTRA shoes resulted in more antiphase coordination than MIN (p =.036) or NEUT (p =.047) shoes and less in-phase coordination than MIN (p =.048) or NEUT (p =.013) shoes. During late stance there was also more proximal phase rearfoot-knee coordination in ULTRA shoes than in either MIN (p =.039) or NEUT (p =.005) shoes and less in-phase coordination in ULTRA shoes than in NEUT shoes (p =.006). There were no differences in coordination variability between shoes during any phase. The differences in coordination may have implications for tissue loading and injury development when running in ULTRA shoes..  相似文献   

11.
This study sought to compare the kinetics and kinematics data in a group of habitual shod runners when running in traditional running shoes and newly designed minimalist shoes with lug platform. This novel footwear design claims to simulate barefoot running and reduce energy loss during impact. We compared footstrike angle (FSA), vertical average (VALR) and instantaneous (VILR) loading rates, energy loss and initial vertical stiffness between two shoe conditions. Runners demonstrated a decreased FSA while running in minimalist shoes with lug platform than traditional shoes (= 0.003; Cohen’s = 0.918). However, we did not observe a landing pattern transition. VALR and VILR between two footwear conditions showed no significant difference (= 0.191–0.258; Cohen’s = 0.304–0.460). Initial vertical stiffness (= 0.032; Cohen’s = 0.671) and energy loss (= 0.044; Cohen’s = 0.578) were greater when running in minimalist shoes with lug platform. The results show that minimalist shoes with lug platform reduce the FSA but may not lead to a landing pattern switch or lower vertical loading rates. Interestingly, the new shoe design leads to a greater energy loss than traditional running shoes, which could be explained by a higher initial vertical stiffness.  相似文献   

12.
ABSTRACT

Running is an activity with a consistently high injury rate. Running footwear design that mimics barefoot running has been proposed to reduce injury rate by increasing the strength of foot structures. However, there is little evidence to support this. The purpose of the current study is to use shear wave ultrasound elastography to examine material properties (shear modulus) of intrinsic foot structures in experienced minimally and traditionally shod runners. It is hypothesized that minimalist runners will exhibit increased stiffness compared to controls demonstrating the strengthening of these structures. Eighteen healthy runners (8 minimalist and 10 traditionalist), running a minimum of 10 mi · wk?1, participated. Elastography scans were performed on the left foot of each participant. There is no apparent stiffening of foot structures associated with wearing minimalist shoes. Only the FHB tendon is different between shoe types and, contrary to the hypothesis, was stiffer in traditionalist compared to minimalist runners (257.26 ± 51.64 kPa vs 160.88 ± 27.79 kPa, respectively). A moderate positive (r = 0.7) relationship between training load and tendon stiffness suggests strengthening of tendon when running in traditional shoes. If running in minimalist shoes increases loading on these structures without resulting in stronger tissues, it is possible that minimalist footwear may increase injury risk.  相似文献   

13.
Fencing is a high-intensity sport involving dynamic movements such as the lunge exposing the musculoskeletal system to high impact forces, which emphasises the importance of the shock attenuating properties of footwear as a factor in the prevention of injury. The aim of this study was to investigate the magnitudes of the transient axial impact shock experienced at the tibia between traditional fencing shoes and standard athletic footwear during the impact phase of the fencing lunge. Peak tibial shock was measured in 19 male fencers in 4 different footwear conditions using an accelerometer placed on the distal aspect of the tibia. The standard footwear (11.08 g and 8.75 g for squash and running shoe, respectively) resulted in significant (p < 0.01) reductions in peak impact shock in comparison to the traditional fencing shoes (15.93 g and 13.97 g for the Adidas and Hi-Tec shoe, respectively). No significant differences were found between the running and squash shoes (p = 0.09) or between the fencing shoes (p = 0.48). The documented reduction in impact shock found suggests that running or squash specific footwear may reduce overuse injury occurrence, indicating that there is justification for a re-design of fencing shoes.  相似文献   

14.
In this study, we evaluated the protective functions of cloth sport shoes, including cushioning and lateral stability. Twelve male students participated in the study (mean +/- s: age 12.7 +/- 0.4 years, mass 40.7 +/- 5.9kg, height 1.50 +/- 0.04m). Cloth sport shoes, running shoes, basketball shoes, crosstraining shoes, and barefoot conditions were investigated in random sequence. Human pendulum and cutting movement tests were used to assess cushioning performance and lateral stability, respectively. For cushioning, the running shoes (2.06 body weight, BW) performed the best, while the cross-training shoes (2.30 BW) and the basketball shoes (2.37 BW) both performed better than the cloth sport shoes (2.55 BW) and going barefoot (2.63 BW). For the lateral stability test, range of inversion--eversion was found to be from 3.6 to 4.9 degrees, which was far less than that for adult participants (> 20 degrees). No significant differences were found between conditions. All conditions showed prolonged durations from foot-strike to maximum inversion (66-95 ms), which was less vigorous than that for adult participants (< 40 ms) and was unlikely to evoke intrinsic stability failure. In conclusion, the cloth sport shoe showed inferior cushioning capability but the same lateral stability as the other sports shoes for children.  相似文献   

15.
Little is known about the reliability, validity and smallest detectable differences of selected kinetic and temporal variables recorded by the Zebris FDM-THQ instrumented treadmill especially during running. Twenty male participants (age = 31.9 years (±5.6), height = 1.81 m (±0.08), mass = 80.2 kg (±9.5), body mass index = 24.53 kg/m2 (±2.53)) walked (5 km/h) and ran (10 and 15 km/h) on an instrumented treadmill, wearing running shoes fitted with Pedar-X insoles. A test-double retest protocol was conducted over two consecutive days. Maximal vertical force (Fmax), contact time (CT) and flight time (FT) data from 10 consecutive steps were collected. Within- and between-day reliability, smallest detectable differences (SDD) and validity (95% limits of agreement (LOA)) were calculated. ICC values for the Zebris for Fmax were acceptable (ICC ≥ 0.7) while CT and FT reliability indices were predominantly good (ICC ≥ 0.8) to excellent (ICC ≥ 0.9). The Zebris significantly underestimated Fmax when compared with the Pedar-X. The 95% LOA increased with speed. SDD ranged between 96 N and 169 N for Fmax, 0.017s and 0.055s for CT and 0.021s and 0.026s for FT. In conclusion, Zebris reliability was acceptable to excellent for the variables examined, but inferior in comparison with Pedar-X. With increased running speeds, a bias effect (underestimation) existed for the Zebris compared with Pedar-X.  相似文献   

16.
17.
The aim of this study was to investigate, for typical shoes and surfaces used in tennis, the relative role of the shoe and surface in providing cushioning during running. Five test surfaces ranging from concrete to artificial turf were selected, together with two shoe models. Impact absorbing ability was assessed mechanically using drop test procedures and biomechanically using peak magnitude and rate of loading of impact force and peak in-shoe pressure data at the lateral heel. Differences in biomechanical variables between shoe-surface combinations were identified using a two-way ANOVA (p < 0.05). Mechanical test results were found to rank the surfaces in the same order regardless of the shoe model, suggesting that the surface is influential in providing cushioning. However, for all mechanical and biomechanical (p < 0.05) variables representing impact absorbing ability, it was found that the difference between shoes was markedly greater than the differences between surfaces. The peak heel pressure data were found to rank the surfaces in the same order as the mechanical tests, while impact force data were not as sensitive to the changes in surface. Correlations between mechanical and biomechanical impact absorption highlighted the importance of testing the shoe-surface combination in mechanical tests, rather than the surface alone. In conclusion, mechanical testing of the shoe-surface combination was found to provide a strong predictor of the impact absorbing ability during running if pressure data were used. In addition, for typical shoe-surface combinations in tennis, the shoe was found to have more potential than the surface to influence impact loading during running. Finally, in-shoe pressure data were found to be more sensitive than force plate data to changes in material cushioning.  相似文献   

18.
Despite the growing interest in minimalist shoes, no studies have compared the efficacy of different types of minimalist shoe models in reproducing barefoot running patterns and in eliciting biomechanical changes that make them differ from standard cushioned running shoes. The aim of this study was to investigate the acute effects of different footwear models, marketed as “minimalist” by their manufacturer, on running biomechanics. Six running shoes marketed as barefoot/minimalist models, a standard cushioned shoe and the barefoot condition were tested. Foot–/shoe–ground pressure and three-dimensional lower limb kinematics were measured in experienced rearfoot strike runners while they were running at 3.33 m · s?1 on an instrumented treadmill. Physical and mechanical characteristics of shoes (mass, heel and forefoot sole thickness, shock absorption and flexibility) were measured with laboratory tests. There were significant changes in foot strike pattern (described by the strike index and foot contact angle) and spatio-temporal stride characteristics, whereas only some among the other selected kinematic parameters (i.e. knee angles and hip vertical displacement) changed accordingly. Different types of minimalist footwear models induced different changes. It appears that minimalist footwear with lower heel heights and minimal shock absorption is more effective in replicating barefoot running.  相似文献   

19.
The aim of this study was to determine whether individuals responded uniquely to three different pairs of tennis shoes that differed only in midsole hardness. Kinematic and kinetic data were collected while the subjects (n = 3) performed a stereotyped lateral movement wearing each of the three pairs of tennis shoes. The results were analysed statistically for each subject separately. Variables were identified as discriminators between shoes for individual subjects based upon the results of separate discriminant analyses. After these analyses, a multivariate analysis of variance (MANOVA) was used for each subject to determine whether the discriminator variables differed significantly between shoes. A scoring system was devised that used the results of the MANOVA to assign scores to shoes for each variable. Cumulative scores for shoes (for each subject) were compared to determine which shoe was best for a subject. The results indicated that each subject responded uniquely to the shoes, and each demonstrated a preference for a particular pair of shoes. A need for single-subject designs exists when evaluating variations in athletic shoes.  相似文献   

20.
This study investigated whether male runners improve running performance, running economy, ankle plantar flexor strength, and alter running biomechanics and lower limb bone mineral density when gradually transitioning to using minimalist shoes for 100% of weekly running. The study was a planned follow-up of runners (n?=?50) who transitioned to minimalist or conventional shoes for 35% of weekly structured training in a previous 6-week randomised controlled trial. In that trial, running performance and economy improved more with minimalist shoes than conventional shoes. Runners in each group were instructed to continue running in their allocated shoe during their own preferred training programme for a further 20 weeks while increasing allocated shoe use to 100% of weekly training. At the 20-week follow-up, minimalist shoes did not affect performance (effect size: 0.19; p?=?0.218), running economy (effect size: ≤?0.24; p?≥?0.388), stride rate or length (effect size: ≤?0.12; p?≥?0.550), foot strike (effect size: ≤?0.25; p?≥?0.366), or bone mineral density (effect size: ≤?0.40; p?≥?0.319). Minimalist shoes increased plantar flexor strength more than conventional shoes when runners trained with greater mean weekly training distances (shoe*distance interaction: p?=?0.036). After greater improvements with minimalist shoes during the initial six weeks of a structured training programme, increasing minimalist shoe use from 35% to 100% over 20 weeks, when runners use their own preferred training programme, did not further improve performance, running economy or alter running biomechanics and lower limb bone mineral density. Minimalist shoes improved plantar flexor strength more than conventional shoes in runners with greater weekly training distances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号