首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 488 毫秒
1.
Abstract

The purpose of this study was to assess the effects of heavy resistance, explosive resistance, and muscle endurance training on neuromuscular, endurance, and high-intensity running performance in recreational endurance runners. Twenty-seven male runners were divided into one of three groups: heavy resistance, explosive resistance or muscle endurance training. After 6 weeks of preparatory training, the groups underwent an 8-week resistance training programme as a supplement to endurance training. Before and after the 8-week training period, maximal strength (one-repetition maximum), electromyographic activity of the leg extensors, countermovement jump height, maximal speed in the maximal anaerobic running test, maximal endurance performance, maximal oxygen uptake ([Vdot]O2max), and running economy were assessed. Maximal strength improved in the heavy (P = 0.034, effect size ES = 0.38) and explosive resistance training groups (P = 0.003, ES = 0.67) with increases in leg muscle activation (heavy: P = 0.032, ES = 0.38; explosive: P = 0.002, ES = 0.77). Only the heavy resistance training group improved maximal running speed in the maximal anaerobic running test (P = 0.012, ES = 0.52) and jump height (P = 0.006, ES = 0.59). Maximal endurance running performance was improved in all groups (heavy: P = 0.005, ES = 0.56; explosive: P = 0.034, ES = 0.39; muscle endurance: P = 0.001, ES = 0.94), with small though not statistically significant improvements in [Vdot]O2max (heavy: ES = 0.08; explosive: ES = 0.29; muscle endurance: ES = 0.65) and running economy (ES in all groups < 0.08). All three modes of strength training used concurrently with endurance training were effective in improving treadmill running endurance performance. However, both heavy and explosive strength training were beneficial in improving neuromuscular characteristics, and heavy resistance training in particular contributed to improvements in high-intensity running characteristics. Thus, endurance runners should include heavy resistance training in their training programmes to enhance endurance performance, such as improving sprinting ability at the end of a race.  相似文献   

2.
Abstract

The aim of the present study was to determine the repeatability of a running endurance test using an automated treadmill system that requires no manual input to control running speed. On three separate occasions, 7 days apart, 10 experienced male endurance-trained runners (mean age 32 years, s = 10; [Vdot]O2peak 61 ml · kg?1 · min?1, s = 7) completed a treadmill time trial, in which they were instructed to run as far as possible in 60 min. The treadmill was instrumented with an ultrasonic feedback-controlled radar modulator that spontaneously regulated treadmill belt speed corresponding to the changing running speed of each runner. Estimated running intensity was 70%[Vdot]O2peak (s = 11) and the distance covered 13.5 km (s = 2), with no difference in mean performances between trials. The coefficient of variation, estimated using analysis of variance, with participant and trial as main effects, was 1.4%. In summary, the use of an automated treadmill system improved the repeatability of a 60-min treadmill time trial compared with time trials in which speed is controlled manually. The present protocol is a reliable method of assessing endurance performance in endurance-trained runners.  相似文献   

3.
Abstract

The aim of the study was to compare physiological responses between runners adapted and not adapted to deep water running at maximal intensity and the intensity equivalent to the ventilatory threshold. Seventeen runners, either adapted (n = 10) or not adapted (n = 7) to deep water running, participated in the study. Participants in both groups undertook a maximal treadmill running and deep water running graded exercise test in which cardiorespiratory variables were measured. Interactions between adaptation (adapted vs. non-adapted) and condition (treadmill running vs. deep water running) were analysed. The main effects of adaptation and condition were also analysed in isolation. Runners adapted to deep water running experienced less of a reduction in maximum oxygen consumption ([Vdot]O2max) in deep water running compared with treadmill running than runners not adapted to deep water running. Maximal oxygen consumption, maximal heart rate, maximal ventilation, [Vdot]O2 at the ventilatory threshold, heart rate at the ventilatory threshold, and ventilation at the ventilatory threshold were significantly higher during treadmill than deep water running. Therefore, we conclude that adaptation to deep water running reduces the difference in [Vdot]O2max between the two modalities, possibly due to an increase in muscle recruitment. The results of this study support previous findings of a lower maximal and submaximal physiological response on deep water running for most of the measured parameters.  相似文献   

4.
Abstract

The aim of this study was to objectively quantify ratings of perceived enjoyment using the Physical Activity Enjoyment Scale following high-intensity interval running versus moderate-intensity continuous running. Eight recreationally active men performed two running protocols consisting of high-intensity interval running (6×3 min at 90% [Vdot]O2max interspersed with 6×3 min active recovery at 50% [Vdot]O2max with a 7-min warm-up and cool down at 70% [Vdot]O2max) or 50 min moderate-intensity continuous running at 70% [Vdot]O2max. Ratings of perceived enjoyment after exercise were higher (P < 0.05) following interval running compared with continuous running (88 ± 6 vs. 61 ± 12) despite higher (P < 0.05) ratings of perceived exertion (14 ± 1 vs. 13 ± 1). There was no difference (P < 0.05) in average heart rate (88 ± 3 vs. 87 ± 3% maximum heart rate), average [Vdot]O2 (71 ± 6 vs. 73 ± 4%[Vdot]O2max), total [Vdot]O2 (162 ± 16 vs. 166 ± 27 L) or energy expenditure (811 ± 83 vs. 832 ± 136 kcal) between protocols. The greater enjoyment associated with high-intensity interval running may be relevant for improving exercise adherence, since running is a low-cost exercise intervention requiring no exercise equipment and similar relative exercise intensities have previously induced health benefits in patient populations.  相似文献   

5.
Abstract

The Yo-Yo intermittent endurance test is frequently used to assess aerobic endurance performance in young soccer players but only the logical validity of the test has been shown to date. The main ai m of this study was to assess the criterion (i.e. association with maximal aerobic capacity, [Vdot]O2max) and construct validities of the test in young soccer players. A secondary aim was to examine possible shared variance of the Yo-Yo intermittent endurance test with other physical capacities. Sixty-two soccer players (age 13.7±0.5 years) from an Under-14 team participated. All players performed a battery of fitness tests to assess [Vdot]O2max, aerobic endurance performance (Yo-Yo intermittent endurance test), soccer dribbling endurance performance (Hoff dribbling test), and power performance (maximal vertical jump, 30-m sprint with 10-m split time). Results showed that the Yo-Yo intermittent endurance test was strongly correlated with [Vdot]O2max (r=0.63, P<0.001), thereby showing the test's criterion validity. Players with the best performance on the Yo-Yo intermittent endurance test had significantly higher [Vdot]O2max (P<0.001, large effect), and significantly better soccer dribbling endurance (P<0.001, large effect) and 30-m sprint times (P<0.05, medium effect). Logistic regression (r=0.79, P=0.0001) showed that Hoff dribbling test performance (explained variance=50.4%), [Vdot]O2max (explained variance=39.7%), and 30-m sprint time (explained variance=14.4%) were significant independent parameters contributing to performance on the Yo-Yo intermittent endurance test. Therefore, the Yo-Yo intermittent endurance test is a valid on-field aerobic endurance performance test for young soccer players, which can also be used to differentiate the maximal aerobic capacity, soccer dribbling endurance, and 30-m sprint performance of these players.  相似文献   

6.
Abstract

The purpose of this study was to examine the psychosocial correlates of cardiorespiratory fitness ([Vdot]O2peak) and muscle strength in overweight and obese sedentary post-menopausal women. The study population consisted of 137 non-diabetic, sedentary overweight and obese post-menopausal women (mean age 57.7 years, s = 4.8; body mass index 32.4 kg · m?2, s = 4.6). At baseline we measured: (1) body composition using dual-energy X-ray absorptiometry; (2) visceral fat using computed tomography; (3) insulin sensitivity using the hyperinsulinaemic-euglycaemic clamp; (4) cardiorespiratory fitness; (5) muscle strength using the leg press exercise; and (6) psychosocial profile (quality of life, perceived stress, self-esteem, body-esteem, and perceived risk for developing chronic diseases) using validated questionnaires. Both [Vdot]O2peak and muscle strength were significantly correlated with quality of life (r = 0.29, P < 0.01 and r = 0.30, P < 0.01, respectively), and quality of life subscales for: physical functioning (r = 0.28, P < 0.01 and r = 0.22, P < 0.05, respectively), pain (r = 0.18, P < 0.05 and r = 0.23, P < 0.05, respectively), role functioning (r = 0.20, P < 0.05 and r = 0.24, P < 0.05, respectively), and perceived risks (r = ?0.24, P < 0.01 and r = ?0.30, P < 0.01, respectively). In addition, [Vdot]O2peak was significantly associated with positive health perceptions, greater body esteem, and less time watching television/video. Stepwise regression analysis showed that quality of life for health perceptions and for role functioning were independent predictors of [Vdot]O2peak and muscle strength, respectively. In conclusion, higher [Vdot]O2peak and muscle strength are associated with a favourable psychosocial profile, and the psychosocial correlates of [Vdot]O2peak were different from those of muscle strength. Furthermore, psychosocial factors could be predictors of [Vdot]O2peak and muscle strength in our cohort of overweight and obese sedentary post-menopausal women.  相似文献   

7.
Abstract

Maximal oxygen uptake ([Vdot]O2max) is considered the optimal method to assess aerobic fitness. The measurement of [Vdot]O2max, however, requires special equipment and training. Maximal exercise testing with determination of maximal power output offers a more simple approach. This study explores the relationship between [Vdot]O2max and maximal power output in 247 children (139 boys and 108 girls) aged 7.9–11.1 years. Maximal oxygen uptake was measured by indirect calorimetry during a maximal ergometer exercise test with an initial workload of 30 W and 15 W · min?1 increments. Maximal power output was also measured. A sample (n = 124) was used to calculate reference equations, which were then validated using another sample (n = 123). The linear reference equation for both sexes combined was: [Vdot]O2max (ml · min?1) = 96 + 10.6 · maximal power + 3.5 · body mass. Using this reference equation, estimated [Vdot]O2max per unit of body mass (ml · min?1 · kg?1) calculated from maximal power correlated closely with the direct measurement of [Vdot]O2max (r = 0.91, P <0.001). Bland-Altman analysis gave a mean limits of agreement of 0.2±2.9 (ml · min?1 · kg?1) (1 s). Our results suggest that maximal power output serves as a good surrogate measurement for [Vdot]O2max in population studies of children aged 8–11 years.  相似文献   

8.
Abstract

The aim of this study was to assess and compare the validity of the portable VmaxST telemetry metabolic measurement device with that of a standard measurement system (Vmax29). Thirty asymptomatic, moderately active males provided written, informed consent and completed two maximal graded treadmill exercise tests (Bruce) using the VmaxST and the Vmax29 metabolic measurement systems. Tests were performed in random order on separate days to obtain peak values for time to exhaustion, heart rate, systolic and diastolic blood pressure, oxygen consumption ([Vdot]O2), carbon dioxide production ([Vdot]CO2), ventilation ([Vdot] E), and respiratory exchange ratio (RER). Multivariate analysis of variance revealed no significant main effect (P = 0.88) between the two systems across any variable, suggesting similar measurement capabilities between the two systems. Linear regression analyses revealed moderate to high coefficients of determination for [Vdot]O2 (r 2 = 0.99), [Vdot]CO2 (r 2 = 0.99), [Vdot] E (r 2 = 0.99), and RER (r 2 = 0.89). Furthermore, Bland-Altman analyses demonstrated that the VmaxST yielded similar values to the Vmax29, suggesting good agreement between the two systems. Agreement was confirmed when the differences between the methods resulted in a small range as identified by the 95% limits of agreement. Findings from the current study confirm that the VmaxST is a valid device for measuring metabolic and physiological variables during exercise within a controlled laboratory setting.  相似文献   

9.
Abstract

The present study was designed to examine physiological responses during motocross riding. Nine Finnish A-level motocross riders performed a 15-min ride at a motocross track and a test of maximal oxygen uptake ([Vdot]O2max) in the laboratory. Cardiopulmonary strain was measured continuously during the ride as well as in the [Vdot]O2max test. During the ride, mean [Vdot]O2 was 32 ml · kg?1 · min?1 (s = 4), which was 71% (s = 12) of maximum, while ventilation (V E) was 73% (s = 15) of its maximum. The relative [Vdot]O2 and V E values during the riding correlated with successful riding performance (r = 0.80, P < 0.01 and r = 0.79, P < 0.01, respectively). Mean heart rate was maintained at 95% (s = 7) of its maximum. Mean blood lactate concentration was 5.0 mmol · l?1 (s = 2.0) after the ride. A reduction of 16% (P < 0.001) in maximal isometric handgrip force was observed. In conclusion, motocross causes riders great physical stress. Both aerobic and anaerobic metabolism is required for the isometric and dynamic muscle actions experienced during a ride.  相似文献   

10.
Abstract

The aim of the present study was to determine the effect of a carbohydrate mouthwash on running time-trial performance. On two separate occasions, seven recreationally active males ([Vdot]O2max 57.8 ml · kg?1 · min?1, s = 3.7) completed a preloaded (15 min at 65%[Vdot]O2max) time-trial of 45 min in duration on a motorized treadmill. At 6-min intervals during the preload and time-trial, participants were given either a 6% maltodextrin, 3% lemon juice solution (carbohydrate trial) or a 3% lemon juice placebo mouthwash (placebo trial) in a double-blind, randomized crossover design. Heart rate, oxygen consumption ([Vdot]O2), respiratory exchange ratio (RER), and ratings of perceived exertion (RPE) were measured during the preload, and blood glucose and lactate were measured before and after the preload and time-trial. There were no significant differences in distance covered between trials (carbohydrate: 9333 m, s = 988; placebo: 9309 m, s = 993). Furthermore, there were no significant between-trial differences in heart rate and running speed during the time-trial, or [Vdot]O2, RER or RPE during the preload. Blood lactate and glucose increased as a result of the exercise protocol, with no between-trial differences. In conclusion, there was no positive effect of a carbohydrate mouthwash on running performance of ~1 h duration.  相似文献   

11.
Abstract

Three textiles with increasing compressive surface were compared with non-compressive conventional clothing on physiological and perceptual variables during sub-maximal and maximal running. Fifteen well-trained endurance athletes (mean ± s: age 27.1 ± 4.8 years, [Vdot]O2max 63.7 ± 4.9 ml · min?1 · kg?1) performed four sub-maximal (~70%[Vdot]O2max) and maximal tests with and without different compression stockings, tights, and whole-body compression suits. Arterial lactate concentration, oxygen saturation and partial pressure, pH, oxygen uptake, and ratings of muscle soreness were recorded before, during, and after all tests. In addition, we assessed time to exhaustion. Sub-maximal (P = 0.22) and maximal oxygen uptake (P = 0.26), arterial lactate concentration (P = 0.16; 0.20), pH (P = 0.23; 0.46), oxygen saturation (P = 0.13; 0.26), and oxygen partial pressure (P = 0.09; 0.20) did not differ between the types of clothing (effect sizes = 0.00–0.45). Ratings of perceived exertion (P = 0.10; 0.15), muscle soreness (P = 0.09; 0.10) and time to exhaustion (P = 0.16) were also unaffected by the different clothing (effect sizes = 0.28–0.85). This was the first study to evaluate the effect on endurance performance of different types of compression clothing with increasing amounts of compressive surface. Overall, there were no performance benefits when using the compression garments.  相似文献   

12.
Abstract

The aim of this study was to assess the effects of nicotinamide adenine dinucleotide hydride (NADH) on maximal oxygen uptake ([Vdot]O2max), maximal anaerobic running time, and mental performance. Eight men were exposed to a supplement treatment (30 mg NADH as ENACHI tablets per day) and to a placebo treatment, each of 4 weeks' duration, in a balanced, double-blind, and cross-over design. The two treatments were separated by a 14-week wash-out period. The results indicated that [Vdot]O2max, maximal anaerobic running time, and the ability to concentrate were similar in the NADH and placebo conditions. There were also no differences in blood lactate, creatine kinase, reaction time or feelings of fatigue between the treatments. A counter-movement jump performed at rest and 2 min after the aerobic test differed significantly (P ≤ 0.05) between the treatment conditions and was higher in the NADH group. In conclusion, the NADH supplementation for 4 weeks had no effects on [Vdot]O2max, maximal anaerobic running time or mental performance.  相似文献   

13.
Abstract

In this study, we investigated the effect of biological maturation on maximal oxygen uptake ([Vdot]O2max) and ventilatory thresholds (VT1 and VT2) in 110 young soccer players separated into pubescent and post-pubescent groups.. Maximal oxygen uptake and [Vdot]O2 corresponding to VT1 and VT2 were expressed as absolute values, ratio standards, theoretical exponents, and experimentally observed exponents. Absolute [Vdot]O2 (ml · min?1) was different between groups for VT1, VT2, and [Vdot]O2max. Ratio standards (ml · kg?1 · min?1) were not significantly different between groups for VT1, VT2, and [Vdot]O2max. Theoretical exponents (ml · kg?0.67 · min?1 and ml · kg?0.75 · min?1) were not properly adjusted for the body mass effects on VT1, VT2, and [Vdot]O2max. When the data were correctly adjusted using experimentally observed exponents, VT1 (ml · kg?0.94 · min?1) and VT2 (ml · kg?0.95 · min?1) were not different between groups. The experimentally observed exponent for [Vdot]O2max (ml · kg?0.90 · min?1) was different between groups (P = 0.048); however, this difference could not be attributed to biological maturation. In conclusion, biological maturation had no effect on VT1, VT2 or [Vdot]O2max when the effect of body mass was adjusted by experimentally observed exponents. Thus, when evaluating the physiological performance of young soccer players, allometric scaling needs to be taken into account instead of using theoretical approaches.  相似文献   

14.
Abstract

We examined the reliability and validity of the assistant referee intermittent endurance test (ARIET), a modified Yo-Yo IE2 test including shuttles of sideways running. The ARIET was carried out on 198 Italian (Serie A-B, Lega-Pro and National Level) and 47 Danish elite soccer assistant referees. Reproducibility was tested for 41 assistant referees on four occasions each separated by one week. The ARIET intraclass correlation coefficients and typical error of measurement ranged from 0.96 to 0.99 and 3.1 to 5.7%, respectively. ARIET performance for Serie A and B was 23 and 25% greater than in Lega-Pro (P < 0.001). The lowest cut-off value derived from receiving operator characteristic discriminating Serie A-B from Lega-Pro was 1300 m. The ARIET performance was significantly correlated with [Vdot]O2max (r = 0.78, P < 0.001), %HRmax after 4 min of ARIET (r = ? 0.81, P < 0.001) and Yo-Yo IR1 performance (r = 0.95, P < 0.001), but not sprint performance (r = ?0.15; P = 0.58). The results showed that ARIET is a reproducible and valid test that is able to discriminate between assistant referees of different competitive levels. The lack of correlation with sprinting ability and close correlations with aerobic power, intermittent shuttle running and sub-maximal ARIET heart rate loading provide evidence that ARIET is arelevant test for assessment of intermittent endurance capacity of soccer assistant referees.  相似文献   

15.
Abstract

The aims of the study were to investigate blood lactate recovery and respiratory variables during diagonal skiing of variable intensity in skiers at different performance levels. Twelve male cross-country skiers classified as elite (n=6; [Vdot]O2max=73±3 ml · kg?1 · min?1) or moderately trained (n=6; [Vdot]O2max=61±5 ml · kg?1 · min?1) performed a 48-min variable intensity protocol on a treadmill using the diagonal stride technique on roller skis, alternating between 3 min at 90% and 6 min at 70% of [Vdot]O2max. None of the moderately trained skiers were able to complete the variable intensity protocol and there was a difference in time to exhaustion between the two groups (elite: 45.0±7.3 min; moderately trained: 31.4±10.4 min) (P<0.05). The elite skiers had lower blood lactate concentrations and higher blood base excess concentrations at all 70% workloads than the moderately trained skiers (all P<0.05). In contrast, [Vdot] E/[Vdot]O2 and [Vdot] E/[Vdot]CO2 at the 70% [Vdot]O2max workloads decreased independently of group (P<0.05). Partial correlations showed that [Vdot]O2max was related to blood lactate at the first and second intervals at 70% of [Vdot]O2max (r=?0.81 and r=?0.82; both P<0.01) but not to [Vdot] E/[Vdot]O2, [Vdot] E/[Vdot]CO2 or the respiratory exchange ratio. Our results demonstrate that during diagonal skiing of variable intensity, (1) elite skiers have superior blood lactate recovery compared with moderately trained skiers, who did not show any lactate recovery at 70% of [Vdot]O2max, suggesting it is an important characteristic for performance; and (2) the decreases in respiratory exchange ratio, [Vdot] E/[Vdot]O2, and [Vdot] E/[Vdot]CO2 do not differ between elite and moderately trained skiers.  相似文献   

16.
The purpose of this study was to investigate the relationship between running economy (RE) and performance in a homogenous group of competitive Kenyan distance runners. Maximal aerobic capacity (VO2max) (68.8 ± 3.8 ml?kg?1?min?1) was determined on a motorised treadmill in 32 Kenyan (25.3 ± 5.0 years; IAAF performance score: 993 ± 77 p) distance runners. Leg anthropometry was assessed and moment arm of the Achilles tendon determined. While Achilles moment arm was associated with better RE (r2 = 0.30, P = 0.003) and upper leg length, total leg length and total leg length to body height ratio were correlated with running performance (r = 0.42, P = 0.025; r = 0.40, P = 0.030 and r = 0.38, P = 0.043, respectively), RE and maximal time on treadmill (tmax) were not associated with running performance (r = ?0.01, P = 0.965; r = 0.27; P = 0.189, respectively) in competitive Kenyan distance runners. The dissociation between RE and running performance in this homogenous group of runners would suggest that RE can be compensated by other factors to maintain high performance levels and is in line with the idea that RE is only one of many factors explaining elite running performance.  相似文献   

17.
Abstract

The purpose of this study was to assess the relationships among ventilatory threshold T(vent), running economy and distance running performance in a group (N=9) of trained experienced male runners with comparable maximum oxygen uptake ([Vdot]O2 max). Maximal oxygen uptake and submaximal steady state oxygen uptake were measured using open circuit spirometry during treadmill exercise. Ventilatory threshold was determined during graded treadmill exercise using non-invasive techniques, while distance running performance was assessed by the best finish time in two 10-kilometer (km) road races. The subjects averaged 33.8 minutes on the 10km runs, 68.6 ml · kg -1 · min -1 for [Vdot]O2 max, and 48.1 ml · kg -1 · min -1 for steady state [Vdot]O2 running at 243 meters · min -1. The T(vent) (first deviation from linearity of [Vdot]E, [Vdot]CO 2 ) occurred at an oxygen consumption of 41.9 ml · kg -1 · min -1. The relationship between running economy and performance was r = .51 (p>0.15) and the relationship between T(vent) and performance was r = .94 (p < 0.001). Applying stepwise multiple linear regression, the multiple R did not increase significantly with the addition of variables to the T(vent); however, the combination of [Vdot]O2 max, running economy and T(vent) was determined to account for the greatest amount of total variance (89%). These data suggest that among trained and experienced runners with similar [Vdot]O2 max, T(vent) can account for a large portion of the variance in performance during a 10km race.  相似文献   

18.
Abstract

We assessed the agreement between maximal oxygen consumption ([Vdot]O2max) measured directly when performing the 20-m shuttle run test and estimated [Vdot]O2max from five different equations (i.e. Barnett, equations a and b; Léger; Matsuzaka; and Ruiz) in youths. The 20-m shuttle run test was performed by 26 girls (mean age 14.6 years, s = 1.5; body mass 57.2 kg, s = 8.9; height 1.60 m, s = 0.06) and 22 boys (age 15.0 years, s = 1.6; body mass 63.5 kg, s = 11.5; height 1.70 m, s = 0.01). The participants wore a portable gas analyser (K4b2, Cosmed) to measure [Vdot]O2 during the test. All the equations significantly underestimated directly measured [Vdot]O2max, except Barnett's (b) equation. The mean difference ranged from 1.3 ml · kg?1 · min?1 (Barnett (b)) to 5.5 ml · kg?1 · min?1 (Léger). The standard error of the estimate ranged from 5.3 ml · kg?1 · min?1 (Ruiz) to 6.5 ml · kg?1 · min?1 (Léger), and the percentage error ranged from 21.2% (Ruiz) to 38.3% (Léger). The accuracy of the equations available to estimate [Vdot]O2max from the 20-m shuttle run test is questionable at the individual level. Furthermore, special attention should be paid when comparisons are made between studies (e.g. population-based studies) using different equations. The results of the present study suggest that Barnett's (b) equation provides the closest agreement with directly measured [Vdot]O2max (cardiorespiratory fitness) in youth.  相似文献   

19.
Abstract

Maximum oxygen uptake ([Vdot]O2PEAK) is generally considered to be the best single marker for aerobic fitness. While a positive relationship between daily physical activity and aerobic fitness has been established in adults, the relationship appears less clear in children and adolescents. The purpose of this paper is to summarise recently published data on the relationship between daily physical activity, as measured by accelerometers, and [Vdot]O2PEAK in children and adolescents. A PubMed search was performed on 29 October 2010 to identify relevant articles. Studies were considered relevant if they included measurement of daily physical activity by accelerometry and related to a [Vdot]O2PEAK either measured directly at a maximal exercise test or estimated from maximal power output. A total of nine studies were identified, with a total number of 6116 children and adolescents investigated. Most studies reported a low-to-moderate relationship (r = 0.10–0.45) between objectively measured daily physical activity and [Vdot]O2PEAK. No conclusive evidence exists that physical activity of higher intensities are more closely related to [Vdot]O2PEAK, than lower intensities.  相似文献   

20.
Abstract

The aim of this study was to examine the acute effects of prolonged static stretching (SS) on running economy. Ten male runners ([Vdot]O2peak 60.1 ± 7.3 ml · kg?1 · min?1) performed 10 min of treadmill running at 70%[Vdot]O2peak before and after SS and no stretching interventions. For the stretching intervention, each leg was stretched unilaterally for 40 s with each of eight different exercises and this was repeated three times. Respiratory gas exchange was measured throughout the running exercise with an automated gas analysis system. On a separate day, participants were tested for sit and reach range of motion, isometric strength and countermovement jump height before and after SS. The oxygen uptake, minute ventilation, energy expenditure, respiratory exchange ratio and heart rate responses to running were unaffected by the stretching intervention. This was despite a significant effect of SS on neuromuscular function (sit and reach range of motion, +2.7 ± 0.6 cm; isometric strength, ?5.6% ± 3.4%; countermovement jump height ?5.5% ± 3.4%; all P < 0.05). The results suggest that prolonged SS does not influence running economy despite changes in neuromuscular function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号