首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previous research has demonstrated significant decreases in pain perception in healthy individuals following both aerobic and upper body resistance exercise, but research on circuit training has been limited. The purpose of the study was to determine the effects of a strenuous bout of dynamic circuit resistance exercise on pain threshold and pain tolerance in conjunction with changes in blood lactate levels, heart rate (HR), and perceived exertion. A sample of 24 college-age students participated in 2 sessions: (1) a maximal strength testing session and (2) a circuit training bout of exercise that consisted of 3 sets of 12 repetitions with a 1:1 work to rest ratio at 60% one-repetition maximum (1-RM) predicted from a three-repetition maximum (3-RM) for 9 exercises. Participants exhibited increases in pain tolerance, blood lactate levels, HR and perceived exertion following resistance exercise. Preference for exercise intensity was positively correlated with lactate post exercise and tolerance for exercise intensity was positively correlated with pain tolerance and lactate post exercise. In conclusion, this is the first study to demonstrate increases in pain tolerance following a dynamic circuit resistance exercise protocol and disposition for exercise intensity may influence lactate and pain responses to circuit resistance exercise.  相似文献   

2.
Abstract

The aim of this study was to determine whether an exogenous sodium lactate infusion increases blood lactate concentration and decreases performance during a 20-km time-trial. Highly trained male cyclists performed a 20-km time-trial with a saline (control) or sodium lactate infusion. Sodium lactate was infused at rates previously observed to raise blood lactate concentration by 2 mmol·l?1 in trained individuals cycling at 65% of maximum oxygen uptake. Blood lactate concentration increased (P≤0.0001) during both the control and sodium lactate trials compared with rest, with peak values of 9.6 and 10.6 mmol·l?1, respectively. The increase in sodium lactate over time was not significantly different from the control (P=0.34). Time to complete the time-trial and average power for the time-trial were not significantly different between the control (25.72±0.80 min; 348.0±32.4 W) and sodium lactate trials (25.58±0.93 min; 352.6±39.3 W). In addition, rating of perceived exertion, heart rate, and respiratory parameters did not differ between trials. In conclusion, when exogenous lactate is infused during a 20-km cycling time-trial, an exercise bout performed above the maximal lactate steady state, blood lactate concentration did not increase. Furthermore, exogenous lactate infusion did not decrease exercise performance, increase perceived exertion, or change respiratory parameters. Because lactate per se did not change performance outcomes or measured perceived exertion, we suggest that alternative objective measures of exercise intensity and performance be explored.  相似文献   

3.
This study examined the effects of caffeine, co-ingested with a high fat meal, on perceptual and metabolic responses during incremental (Experiment 1) and endurance (Experiment 2) exercise performance. Trained participants performed three constant-load cycling tests at approximately 73% of maximal oxygen uptake (VO2max) for 30 min at 20 degrees C (Experiment 1, n = 8) and to the limit of tolerance at 10 degrees C (Experiment 2, n = 10). The 30 min constant-load exercise in Experiment 1 was followed by incremental exercise (15 W . min-1) to fatigue. Four hours before the first test, the participants consumed a 90% carbohydrate meal (control trial); in the remaining two tests, the participants consumed a 90% fat meal with (fat + caffeine trial) and without (fat-only trial) caffeine. Caffeine and placebo were randomly assigned and ingested 1 h before exercise. In both experiments, ratings of perceived leg exertion were significantly lower during the fat + caffeine than fat-only trial (Experiment 1: P < 0.001; Experiment 2: P < 0.01). Ratings of perceived breathlessness were significantly lower in Experiment 1 (P < 0.01) and heart rate higher in Experiment 2 (P < 0.001) on the fat + caffeine than fat-only trial. In the two experiments, oxygen uptake, ventilation, blood [glucose], [lactate] and plasma [glycerol] were significantly higher on the fat + caffeine than fat-only trial. In Experiment 2, plasma [free fatty acids], blood [pyruvate] and the [lactate]:[pyruvate] ratio were significantly higher on the fat + caffeine than fat-only trial. Time to exhaustion during incremental exercise (Experiment 1: control: 4.9, s = 1.8 min; fat-only: 5.0, s = 2.2 min; fat + caffeine: 5.0, s = 2.2 min; P > 0.05) and constant-load exercise (Experiment 2: control: 116 (88 - 145) min; fat-only: 122 (96 - 144) min; fat + caffeine: 127 (107 - 176) min; P > 0.05) was not different between the fat-only and fat + caffeine trials. In conclusion, while a number of metabolic responses were increased during exercise after caffeine ingestion, perception of effort was reduced and this may be attributed to the direct stimulatory effect of caffeine on the central nervous system. However, this caffeine-induced reduction in effort perception did not improve exercise performance.  相似文献   

4.
ABSTRACT

Purpose: The purpose of this study was to identify whether post-resistance exercise (REx) blood flow restriction (BFR) can elicit a similar acute training stimulus to that offered by either heavy REx or traditional low-load BFR REx. Method: Ten men completed trials with 30% one-repetition maximum (1RM) for 5 sets of 15 repetitions without BFR (30%), with BFR during exercise (30% RD), and with postexercise BFR (30% RP) and at 75% 1RM for 3 sets of 10 repetitions. Lactate and cortisol were measured before and up to 60 min after exercise. Thigh circumference, ratings of perceived exertion (RPE), and pain were measured before and after exercise. Surface electromyography was measured during exercise. Results: All conditions had a large effect (effect size [ES] > 0.8) on lactate, with the largest effects observed with the 75% condition; no differences were observed between the 30% conditions. All conditions had a moderate effect (ES > 0.25 ≤ 0.4) on increasing thigh circumference. This effect was maintained (ES = 0.35) with the application of BFR after REx (30% RP). Change in RPE, from the first to last set, was significantly greater with 30% RD compared with other conditions (all p < .05). Electromyography amplitude was higher and percentage change was greater for the 75% condition compared with the other conditions (both p < .05). Conclusions: The application of BFR immediately post-REx altered several of the responses associated with REx that is aimed at inducing muscular hypertrophy. Additionally, these changes occurred with less pain and perceived exertion suggesting that this form of REx may offer an alternative, tolerable method of REx.  相似文献   

5.
There is evidence to suggest that perception of exertion during exercise is based on both local and central sensations. The aim of the present experiment was to determine the relative contributions of different sensations to overall perceived exertion during cycling. Eighteen trained cyclists pedalled on a cycle ergometer for 4 min at each of three work rates (100, 150 and 200 W) and cadences (50, 70 and 90 rev x min(-1)). At the end of each bout, they used Borg's category-ratio (CR-10) scale to rate their overall perceived exertion, leg muscle pain, knee pain, breathlessness and heart beat intensity. The results indicated that cadence only influenced local sensations (muscle pain and knee pain), which were significantly higher at slower pedalling rates. Neither overall perceived exertion nor central sensations (breathlessness and heart beat intensity) were significantly affected by cadence. In contrast, increases in work rate were associated with higher ratings for all sensations. Further analyses revealed that variations in these overall ratings of perceived exertion as a function of work rate were accounted for by variations in ratings of muscle pain and breathlessness. The general implication is that perceived exertion during cycling derives from a combination of muscle and respiratory sensations.  相似文献   

6.
Perceptions of effort provide a sense of momentary exertion during exercise, but may have value when considered prior to and after exercise. The purpose of the present study was to determine the relationship between perceived exertion assessed before, during, and after trials of aerobic exercise fixed for total work but varied on intensity patterns. Twenty participants completed five trials of treadmill exercise that included planned intensity variations every 10 minutes to result in the same total work. Perceived exertion was taken before, during, and after exercise. Analyses confirmed each trial was similar in terms of average speed and heart rate (P > 0.05). Predicted and session exertion results indicated that the steady exercise bout was perceived as easier than many trials of varied speed (P < 0.05). Trials including an intense segment in the middle or end of the session were perceived as more difficult than sessions that varied intensity otherwise or remained constant. Similarly, trials that remained constant during the 30-minute period were perceived as less aversive than most other trials. These findings suggest that exercise sessions involving a steady intensity throughout are viewed as less taxing than sessions with variable intensity, especially when compared to sessions that conclude with a higher intensity finish.  相似文献   

7.
There is evidence to suggest that perception of exertion during exercise is based on both local and central sensations. The aim of the present experiment was to determine the relative contributions of diff erent sensations to overall perceived exertion during cycling. Eighteen trained cyclists pedalled on a cycle ergometer for 4 min at each of three work rates (100, 150 and 200 W) and cadences (50, 70 and 90 rev. min-1). At the end of each bout, they used Borg's category-ratio (CR-10) scale to rate their overall perceived exertion, leg muscle pain, knee pain, breathlessness and heart beat intensity. The results indicated that cadence only influenced local sensations (muscle pain and knee pain), which were significantly higher at slower pedalling rates. Neither overall perceived exertion nor central sensations (breathlessness and heart beat intensity) were significantly affected by cadence. In contrast, increases in work rate were associated with higher ratings for all sensations. Further analyses revealed that variations in these overall ratings of perceived exertion as a function of work rate were accounted for by variations in ratings of muscle pain and breathlessness. The general implication is that perceived exertion during cycling derives from a combination of muscle and respiratory sensations.  相似文献   

8.
The aim was to compare exercise with and without different degrees of blood-flow restriction on perceived exertion (RPE) and discomfort. Participants were assigned to Experiment 1, 2, or 3. Each completed protocols differing by pressure, load, and/or volume. RPE and discomfort were taken before and after each set. For pressure and RPE, the 20% one repetition maximum (1RM) blood-flow restriction conditions were affected by increasing the pressure from 40% to 50% blood-flow restriction (~12 vs. ~14). This did not appear to happen within the 30% 1RM blood-flow restriction conditions or the higher pressures in the 20% 1RM conditions. The similar RPE between 20% and 30% 1RM to failure was expected given both were to failure. For discomfort, ratings were primarily affected by load at the lowest pressure. Increasing pressure to 50% blood-flow restriction increased discomfort at 20% 1RM (~2.6 vs. ~4). There was a further increase when increasing to 60% blood-flow restriction (~4 vs. ~4.8). The high-load condition had the lowest discomfort, while ratings were highest with 20% 1RM to failure. In conclusion, exercise with blood-flow restriction does not appear to augment the perceptual response observed with low-load exercise to failure.  相似文献   

9.
The literature related to Borg's ratings of perceived exertion (RPE) scale has revealed inconsistencies about the strength of the relationship between ratings of perceived exertion and various physiological criterion measures, such as heart rate, blood lactate concentration, percent maximal oxygen uptake (%VO2max), oxygen uptake (VO2), ventilation and respiration rate. Using sex of participants, fitness, type of RPE scale used, type of exercise, exercise protocol, RPE mode and study quality, we undertook a meta-analysis to determine the strength of the relationship between RPE scores and the six aforementioned physiological measures. The weighted mean validity coefficients were 0.62 for heart rate, 0.57 for blood lactate, 0.64 for %VO2max 0.63 for VO2, 0.61 for ventilation and 0.72 for respiration rate. Analysis of moderator variables revealed that the following study features could account for the variation of results across studies: heart rate--fitness, type of exercise, protocol and RPE mode; blood lactate concentration--sex, RPE scale; VO2--sex, exercise type, RPE mode; ventilation--sex, RPE mode; respiration rate--exercise protocol, RPE mode. The highest correlations between ratings of perceived exertion and the various physiological criterion measures were found in the following conditions: when male participants (whose VO2 or ventilation was measured) were required to maximally exert themselves (measuring %VO2max or ventilation); when the exercise task was unusual [e.g. when participants were swimming, which is less common than walking or running (when heart rate, %VO2max and VO2 are measured)]; or when the 15-point RPE scale (measuring blood lactate concentration) was used. These findings suggest that although Borg's RPE scale has been shown to be a valid measure of exercise intensity, its validity may not be as high as previously thought (r = 0.80-0.90), except under certain conditions.  相似文献   

10.
The thermoregulatory responses of upper-body trained athletes were examined at rest, during prolonged arm crank exercise and recovery in cool (21.5 +/- 0.9 degrees C, 43.9 +/- 10.1% relative humidity; mean +/- s) and warm (31.5 +/- 0.6 degrees C, 48.9 +/- 8.4% relative humidity) conditions. Aural temperature increased from rest by 0.7 +/- 0.7 degrees C (P< 0.05) during exercise in cool conditions and by 1.6 +/- 0.7 degrees C during exercise in warm conditions (P< 0.05). During exercise in cool conditions, calf skin temperature decreased (1.5 +/- 1.3 degrees C), whereas an increase was observed during exercise in warm conditions (3.0 +/- 1.7 degrees C). Lower-body skin temperatures tended to increase by greater amounts than upper-body skin temperatures during exercise in warm conditions. No differences were observed in blood lactate, heart rate or respiratory exchange ratio responses between conditions. Perceived exertion at 45 min of exercise was greater than that reported at 5 min of exercise during the cool trial (P< 0.05), whereas during exercise in the warm trial the rating of perceived exertion increased from initial values by 30 min (P < 0.05). Heat storage, body mass losses and fluid consumption were greater during exercise in warm conditions (7.06 +/- 2.25 J x g(-1) x degrees C(-1), 1.3 +/- 0.5 kg and 1,038 +/- 356 ml, respectively) than in cool conditions (1.35 +/- 0.23 J x g(-1) x degrees C(-1), 0.8 +/- 0.2 kg and 530 +/- 284 ml, respectively; P < 0.05). The results of this study indicate that the increasing thermal strain with constant thermal stress in warm conditions is due to heat storage within the lower body. These results may aid in understanding thermoregulatory control mechanisms of populations with a thermoregulatory dysfunction, such as those with spinal cord injuries.  相似文献   

11.
Factors influencing physiological responses to small-sided soccer games   总被引:3,自引:2,他引:1  
The aim of this study was to examine the effects of exercise type, field dimensions, and coach encouragement on the intensity and reproducibility of small-sided games. Data were collected on 20 amateur soccer players (body mass 73.1 +/- 8.6 kg, stature 1.79 +/- 0.05 m, age 24.5 +/- 4.1 years, VO(2max) 56.3 +/- 4.8 ml x kg(-1) x min(-1)). Aerobic interval training was performed during three-, four-, five- and six-a-side games on three differently sized pitches, with and without coach encouragement. Heart rate, rating of perceived exertion (RPE) on the CR10-scale, and blood lactate concentration were measured. Main effects were found for exercise type, field dimensions, and coach encouragement (P < 0.05), but there were no interactions between any of the variables (P > 0.15). During a six-a-side game on a small pitch without coach encouragement, exercise intensity was 84 +/- 5% of maximal heart rate, blood lactate concentration was 3.4 +/- 1.0 mmol x l(-1), and the RPE was 4.8. During a three-a-side game on a larger pitch with coach encouragement, exercise intensity was 91 +/- 2% of maximal heart rate, blood lactate concentration was 6.5 +/- 1.5 mmol x l(-1), and the RPE was 7.2. Typical error expressed as a coefficient of variation ranged from 2.0 to 5.4% for percent maximal heart rate, from 10.4 to 43.7% for blood lactate concentration, and from 5.5 to 31.9% for RPE. The results demonstrate that exercise intensity during small-sided soccer games can be manipulated by varying the exercise type, the field dimensions, and whether there is any coach encouragement. By using different combinations of these factors, coaches can modulate exercise intensity within the high-intensity zone and control the aerobic training stimulus.  相似文献   

12.
目的:探究冷水浴对延迟性肌肉酸痛(DOMS)患者膝关节本体感觉的干预效果及作用机制。方法:采用随机对照试验,24名男性二级短跑运动员随机分为冷水浴干预组(n=12)和静坐对照组(n=12)。经离心运动诱发下肢肌群出现DOMS,静坐休息5min后进行冷水干预或静坐。分别在运动前、运动后24h、48h、72h、96h测量受试者的左大腿围度、自觉疼痛程度、左腿股四头肌最大等长肌力以及左腿膝关节本体感觉(位置觉+肌肉力觉)。在运动前、运动后即刻(0min)、5min、10min、15min分别测量血乳酸值。结果:(1)离心运动后即刻,两组大腿围度均显著性增加(P<0.05),运动后24h、48h、72h,CWI组的左大腿围度显著低于CON组(P<0.01);(2)离心运动后即刻,两组自觉疼痛程度均显著性增加,运动后24h、72h,CWI组的疼痛程度显著性低于CON组(P<0.01);(3)离心运动后即刻,两组血乳酸值均出现显著性上升(P<0.05),运动后0min~15min,两组间无显著性差异(P>0.05);(4)离心运动后即刻,两组的左腿MVIC均出现显著性下降(P<0.05),运动后24h~96h,CWI组MVIC显著高于CON组(P<0.01),(5)离心运动后即刻,两组左腿的本体感觉(主、被动位置觉、肌肉力觉)均出现显著性下降(P<0.05);运动后24h~96h,CWI组的主动位置觉显著高于CON组(P<0.01),运动后72h,CWI组的被动位置觉显著低于CON组(P<0.01),其他时间点(24h、48h、96h)无显著性差异(P>0.05),运动后24h~96h,CWI组的肌肉力觉显著高于CON组(P<0.01)。结论:冷水浴是运动训练或比赛后快速减轻DOMS症状的有效手段,有利于肌肉肿胀的恢复、减轻疼痛感、促进工作肌肉最大等长肌力及该肌肉所附着关节的本体感觉的恢复,总体有利于减轻DOMS症状。  相似文献   

13.
To assess the effect of cold water immersion and active recovery on thermoregulation and repeat cycling performance in the heat, ten well-trained male cyclists completed five trials, each separated by one week. Each trial consisted of a 30-min exercise task, one of five 15-min recoveries (intermittent cold water immersion in 10 degrees C, 15 degrees C and 20 degrees C water, continuous cold water immersion in 20 degrees C water or active recovery), followed by 40 min passive recovery, before repeating the 30-min exercise task. Recovery strategy effectiveness was assessed via changes in total work in the second exercise task compared with that in the first. Following active recovery, a mean 4.1% (s = 1.8) less total work (P = 0.00) was completed in the second than in the first exercise task. However, no significant differences in total work were observed between any of the cold water immersion protocols. Core and skin temperature, blood lactate concentration, heart rate, rating of thermal sensation, and rating of perceived exertion were recorded. During both exercise tasks there were no significant differences in blood lactate concentration between interventions; however, following active recovery blood lactate concentration was significantly lower (P < 0.05; 2.0 +/- 0.8 mmol . l(-1)) compared with all cold water immersion protocols. All cold water immersion protocols were effective in reducing thermal strain and were more effective in maintaining subsequent high-intensity cycling performance than active recovery.  相似文献   

14.
Performances often vary between the heats and finals of breaststroke swimming competitions possibly because the swimmers try to conserve their energy, or for other tactical reasons. Additionally, coaches might advise either a 'positive' or 'even' pace race strategy during the final. The effect of such pacing changes on metabolism (blood lactate, heart rate, ventilation), ratings of perceived exertion, stroke kinematics and turning times have not been investigated. Nine male competitive breaststroke swimmers swam three paced (Aquapacer) 200-m trials, 48 h apart and in random order, at 98%, 100% and at an attempted 102% of their maximal 200-m time-trial speed. Responses in metabolic variables were similar between the 98% and 100% trials, but higher post-exercise blood lactate concentrations and respiratory exchange ratios were observed following the 102% trial. As the pace of trials increased, stroke rate was found to increase proportionately with stroke count. However, during the latter stages of the 100% trial, a disproportionate increase in the stroke count was observed, which led to a significant pacing error. This feature was more obvious in the 102% trial, where participants demonstrated 'positive pacing' and reported higher ratings of perceived exertion than for the 98% trial. During the early stages of the trials, turning times were initially shorter the faster the pace of the trial; however, as the trials progressed, this pattern was found to reverse. We conclude that a slight reduction in pace during near maximal breaststroke swimming altered kinematic but not post-exercise metabolic responses, while an increase in pace led to positive pacing and an increase in both kinematic responses and anaerobic metabolism.  相似文献   

15.
The aim of this study was to assess the effect of time of day on physiological responses to running at the speed at the lactate threshold. After determination of the lactate threshold, using a standard incremental protocol, nine male runners (age 26.3 +/- 5.7 years, height 1.77 +/- 0.07 m, mass 73.1 +/- 6.5 kg, lactate threshold speed 13.6 +/- 1.6 km x h(-1); mean +/- s) completed a standardized 30 min run at lactate threshold speed, twice within 24 h (07:00-09:00 h and 18:00-21:00 h). Core body temperature, heart rate, minute ventilation, oxygen uptake, carbon dioxide expired, respiratory exchange ratio and capillary blood lactate were measured at rest, after a warm-up and at 10, 20 and 30 min during the run. In addition, the rating of perceived exertion was reported every 10 min during the run. Significant diurnal variation was observed only for body temperature (36.9 +/- 0.9 degrees C vs 37.3 +/- 0.3 degrees C) and respiratory exchange ratio at rest (0.86 +/- 0.01 vs 0.89 +/- 0.07) (P < 0.05). Diurnal variation persisted for body temperature throughout the warm-up (37.1 +/- 0.2 degrees C vs 37.5 +/- 0.3 degrees C) and during exercise (36.2 +/- 0.6 degrees C vs 38.6 +/- 0.4 degrees C), but only during the warm-up for the respiratory exchange ratio (0.85 +/- 0.05 vs 0.87 +/- 0.02) (P < 0.05). The rating of perceived exertion was significantly elevated during the morning trial (12.7 +/- 0.9 vs 11.9 +/- 1.2) (P < 0.05). These findings suggest that, despite the diurnal variation in body temperature, other physiological responses to running at lactate threshold speed are largely unaffected. However, a longer warm-up may be required in morning trials because of a slower increase in body temperature, which could have an impact on ventilation responses and ratings of perceived exertion.  相似文献   

16.
The aim of this study was to examine work-time profiles, blood lactate concentrations and perceived exertion among Greco-Roman wrestlers in the 1998 World Championship. Forty-two senior wrestlers from nine nations were studied in 94 matches. Each match was recorded with a video camera (Panasonic AG 455, film rate: 25 Hz) and analysed for duration of work (wrestling) and rest (interrupt) periods. Blood lactate concentration was determined with an electrochemical device (Analox P-LM5) and a rating of perceived exertion scale (Borg) was used to estimate general exertion and exertion in the extremity and trunk muscles. The mean duration of the matches was 427 s (range 324-535 s), with mean durations of work and rest of 317 and 110 s, respectively. The mean periods of work and rest were 37.2 and 13.8 s, respectively. Mean blood lactate concentration was 14.8 mmol · l -1 (range 6.9-20.6). The difference in mean blood lactate concentration between the first- and final-round matches was not significant ( P > 0.05). Blood lactate concentration was significantly higher ( P ? 0.04) in matches of long duration than in those of short duration. The mean general rating of perceived exertion for all matches was 13.8 according to the scale used. Most of the wrestlers (53.3%) perceived exertion to be highest in the flexors of the forearm, followed by the deltoids (17.4%) and the biceps brachii muscles (12.0%). In addition to a relatively high rating of perceived exertion in the arm muscles, this indicates a high specific load on the flexor muscles of the forearm.  相似文献   

17.
The aim of this study was to assess the effect of time of day on physiological responses to running at the speed at the lactate threshold. After determination of the lactate threshold, using a standard incremental protocol, nine male runners (age 26.3 - 5.7 years, height 1.77 - 0.07 m, mass 73.1 - 6.5 kg, lactate threshold speed 13.6 - 1.6 km· h -1 ; mean - s ) completed a standardized 30 min run at lactate threshold speed, twice within 24 h (07:00- 09:00 h and 18:00-21:00 h). Core body temperature, heart rate, minute ventilation, oxygen uptake, carbon dioxide expired, respiratory exchange ratio and capillary blood lactate were measured at rest, after a warm-up and at 10, 20 and 30 min during the run. In addition, the rating of perceived exertion was reported every 10 min during the run. Significant diurnal variation was observed only for body temperature (36.9 - 0.9°C vs 37.3 - 0.3°C) and respiratory exchange ratio at rest (0.86 - 0.01 vs 0.89 - 0.07) ( P ? 0.05). Diurnal variation persisted for body temperature throughout the warm-up (37.1 - 0.2°C vs 37.5 - 0.3°C) and during exercise (36.2 - 0.6°C vs 38.6 - 0.4°C), but only during the warm-up for the respiratory exchange ratio (0.85 - 0.05 vs 0.87 - 0.02) ( P ? 0.05). The rating of perceived exertion was significantly elevated during the morning trial (12.7 - 0.9 vs 11.9 - 1.2) ( P ? 0.05). These findings suggest that, despite the diurnal variation in body temperature, other physiological responses to running at lactate threshold speed are largely unaffected. However, a longer warm-up may be required in morning trials because of a slower increase in body temperature, which could have an impact on ventilation responses and ratings of perceived exertion.  相似文献   

18.
The aim of this study was to examine work-time profiles, blood lactate concentrations and perceived exertion among Greco-Roman wrestlers in the 1998 World Championship. Forty-two senior wrestlers from nine nations were studied in 94 matches. Each match was recorded with a video camera (Panasonic AG 455, film rate: 25 Hz) and analysed for duration of work (wrestling) and rest (interrupt) periods. Blood lactate concentration was determined with an electrochemical device (Analox P-LM5) and a rating of perceived exertion scale (Borg) was used to estimate general exertion and exertion in the extremity and trunk muscles. The mean duration of the matches was 427 s (range 324-535 s), with mean durations of work and rest of 317 and 110 s, respectively. The mean periods of work and rest were 37.2 and 13.8 s, respectively. Mean blood lactate concentration was 14.8 mmol x 1(-1) (range 6.9-20.6). The difference in mean blood lactate concentration between the first- and final-round matches was not significant (P > 0.05). Blood lactate concentration was significantly higher (P < 0.04) in matches of long duration than in those of short duration. The mean general rating of perceived exertion for all matches was 13.8 according to the scale used. Most of the wrestlers (53.3%) perceived exertion to be highest in the flexors of the forearm, followed by the deltoids (17.4%) and the biceps brachii muscles (12.0%). In addition to a relatively high rating of perceived exertion in the arm muscles, this indicates a high specific load on the flexor muscles of the forearm.  相似文献   

19.
The aim of this study was to determine the effects of caffeine ingestion on a 'preloaded' protocol that involved cycling for 2 min at a constant rate of 100% maximal power output immediately followed by a 1-min 'all-out' effort. Eleven male cyclists completed a ramp test to measure maximal power output. On two other occasions, the participants ingested caffeine (5 mg. kg(-1)) or placebo in a randomized, double-blind procedure. All tests were conducted on the participants' own bicycles using a Kingcycle test rig. Ratings of perceived exertion (RPE; 6-20 Borg scale) were lower in the caffeine trial by approximately 1 RPE point at 30, 60 and 120 s during the constant rate phase of the preloaded test (P <0.05). The mean power output during the all-out effort was increased following caffeine ingestion compared with placebo (794+/-164 vs 750+/-163 W; P=0.05). Blood lactate concentration 4, 5 and 6 min after exercise was also significantly higher by approximately 1 mmol. l(-1) in the caffeine trial (P <0.05). These results suggest that high-intensity cycling performance can be increased following moderate caffeine ingestion and that this improvement may be related to a reduction in RPE and an elevation in blood lactate concentration.  相似文献   

20.
The acute influence of chain-loaded variable resistance exercise on subsequent free-weight one-repetition maximum (1-RM) back squat performance was examined in 16 recreationally active men. The participants performed either a free-weight resistance (FWR) or chain-loaded resistance (CLR) back squat warm-up at 85% 1-RM on two separate occasions. After a 5-min rest, the participants attempted a free-weight 1-RM back squat; if successful, subsequent 5% load additions were made until participants failed to complete the lift. During the 1-RM trials, 3D knee joint kinematics and knee extensor and flexor electromyograms (EMG) were recorded simultaneously. Significantly greater 1-RM (6.2?±?5.0%; p?p?p?>?.05) was found in concentric EMG, eccentric or concentric knee angular velocity, or peak knee flexion angle. Performing a CLR warm-up enhanced subsequent free-weight 1-RM performance without changes in knee flexion angle or eccentric and concentric knee angular velocities; thus a real 1-RM increase was achieved as the mechanics of the lift were not altered. These results are indicative of a potentiating effect of CLR in a warm-up, which may benefit athletes in tasks where high-level strength is required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号