首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
教育   1篇
科学研究   3篇
体育   9篇
  2013年   5篇
  2011年   1篇
  2004年   1篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1989年   1篇
  1945年   1篇
  1926年   1篇
排序方式: 共有13条查询结果,搜索用时 31 毫秒
1.
The kinematic analysis of competition breaststroke swimming has tended to focus on the mean values of swimming speed, stroke rate and stroke length; values in individual lengths, as well as the start, turns and finish, have largely been ignored. This study includes all such variables and aims to improve the coach's holistic understanding of breaststroke racing by determining the relationships and differences between and within these selected kinematic variables. We also compare 100-m events with 200-m events to determine if there are characteristic differences between them. Competitive breaststroke swimming performances in 100-m events (males: n = 159, finishing time = 65.05 +/- 2.62 s; females: n = 158, finishing time = 74.04 +/- 3.66 s) and 200-m events (males: n = 159, finishing time = 141.47 +/- 6.15 s; females: n = 158, finishing time = 158.66 +/- 7.87 s) were collected and analysed from 12 world, international and national championships. The better 100-m and 200-m breaststroke swimmers were found to demonstrate greater competency in the kinematic variables measured, except stroke kinematics, which were unique to each individual. These findings suggest that coaches should place emphasis on all of the kinematic components in training and that they should attempt to identify the stroke rate to stroke length ratio most appropriate for the individual. Finally, characteristic differences do exist between the 100-m and 200-m events, which has implications for how swimmers might train for each event.  相似文献   
2.
The 'rise' of sports nutrition   总被引:3,自引:0,他引:3  
  相似文献   
3.
Book reviews     
Myocybernetic control models of skeletal muscle: characteristics and applications, H. Hatze, University of South Africa Press, Pretoria, 1981. xi+221 pp, ISBN 0 86981 216 5

Psychology of motor learning, (2nd edition) J.B. Oxendine, Prentice‐Hall, Inc., New Jersey, 1984. 403 pp, £26.75 (hb), ISBN 0 13 736603 5

Exercise, health and medicine, Symposium Procedings, Sports Council, London, 1984. 66 pp, £4.00 (pb), ISBN 0 906577 42 X

Human motor actions: Bernstein reassessed, H.T.A. Whiting (ed.), North Holland, Amsterdam, 1984. xxxv+559 pp, £40.00 (hb), ISBN 0 4444 868135

Sporting body sporting mind, John Syer and Christopher Connolly, Cambridge University Press, 1984. 160 pp, £3.95 (pb), ISBN 0 521 26935 0

Exercise physiology: human bioenergetics and its applications, George A. Brooks and Thomas D. Fahey, John Wiley & Sons, UK, 1984. xxiv + 810 pp, £30 (hb) ISBN 0 471 88827 3  相似文献   
4.
Abstract

The aim of this study was to objectively quantify ratings of perceived enjoyment using the Physical Activity Enjoyment Scale following high-intensity interval running versus moderate-intensity continuous running. Eight recreationally active men performed two running protocols consisting of high-intensity interval running (6×3 min at 90% [Vdot]O2max interspersed with 6×3 min active recovery at 50% [Vdot]O2max with a 7-min warm-up and cool down at 70% [Vdot]O2max) or 50 min moderate-intensity continuous running at 70% [Vdot]O2max. Ratings of perceived enjoyment after exercise were higher (P < 0.05) following interval running compared with continuous running (88 ± 6 vs. 61 ± 12) despite higher (P < 0.05) ratings of perceived exertion (14 ± 1 vs. 13 ± 1). There was no difference (P < 0.05) in average heart rate (88 ± 3 vs. 87 ± 3% maximum heart rate), average [Vdot]O2 (71 ± 6 vs. 73 ± 4%[Vdot]O2max), total [Vdot]O2 (162 ± 16 vs. 166 ± 27 L) or energy expenditure (811 ± 83 vs. 832 ± 136 kcal) between protocols. The greater enjoyment associated with high-intensity interval running may be relevant for improving exercise adherence, since running is a low-cost exercise intervention requiring no exercise equipment and similar relative exercise intensities have previously induced health benefits in patient populations.  相似文献   
5.
Whit.  RS Mcke.  DP 《科学中国》1989,(11):26-35
  相似文献   
6.
The aim of this study was to objectively quantify ratings of perceived enjoyment using the Physical Activity Enjoyment Scale following high-intensity interval running versus moderate-intensity continuous running. Eight recreationally active men performed two running protocols consisting of high-intensity interval running (6 × 3 min at 90% VO(2max) interspersed with 6 × 3 min active recovery at 50% VO(2max) with a 7-min warm-up and cool down at 70% VO(2max)) or 50 min moderate-intensity continuous running at 70% VO(2max). Ratings of perceived enjoyment after exercise were higher (P < 0.05) following interval running compared with continuous running (88 ± 6 vs. 61 ± 12) despite higher (P < 0.05) ratings of perceived exertion (14 ± 1 vs. 13 ± 1). There was no difference (P < 0.05) in average heart rate (88 ± 3 vs. 87 ± 3% maximum heart rate), average VO(2) (71 ± 6 vs. 73 ± 4%VO(2max)), total VO(2) (162 ± 16 vs. 166 ± 27 L) or energy expenditure (811 ± 83 vs. 832 ± 136 kcal) between protocols. The greater enjoyment associated with high-intensity interval running may be relevant for improving exercise adherence, since running is a low-cost exercise intervention requiring no exercise equipment and similar relative exercise intensities have previously induced health benefits in patient populations.  相似文献   
7.
Performances often vary between the heats and finals of breaststroke swimming competitions possibly because the swimmers try to conserve their energy, or for other tactical reasons. Additionally, coaches might advise either a 'positive' or 'even' pace race strategy during the final. The effect of such pacing changes on metabolism (blood lactate, heart rate, ventilation), ratings of perceived exertion, stroke kinematics and turning times have not been investigated. Nine male competitive breaststroke swimmers swam three paced (Aquapacer) 200-m trials, 48 h apart and in random order, at 98%, 100% and at an attempted 102% of their maximal 200-m time-trial speed. Responses in metabolic variables were similar between the 98% and 100% trials, but higher post-exercise blood lactate concentrations and respiratory exchange ratios were observed following the 102% trial. As the pace of trials increased, stroke rate was found to increase proportionately with stroke count. However, during the latter stages of the 100% trial, a disproportionate increase in the stroke count was observed, which led to a significant pacing error. This feature was more obvious in the 102% trial, where participants demonstrated 'positive pacing' and reported higher ratings of perceived exertion than for the 98% trial. During the early stages of the trials, turning times were initially shorter the faster the pace of the trial; however, as the trials progressed, this pattern was found to reverse. We conclude that a slight reduction in pace during near maximal breaststroke swimming altered kinematic but not post-exercise metabolic responses, while an increase in pace led to positive pacing and an increase in both kinematic responses and anaerobic metabolism.  相似文献   
8.
Generally, swimmers pace themselves using their own judgement and the poolside clock during swimming training, fitness testing protocols or scientific investigation. The Aquapacer? is a new pacing device that can be used to pace the swimming speed or stroke rate of the swimmer. The aims of this study were to determine if breaststroke swimmers could pace accurately during submaximal swimming using a poolside clock (Study 1) and the Aquapacer? (Study 2), at swimming speeds at, just above and just below maximal 200 m time-trial speeds (using the Aquapacer?, Study 3) and under three different race pacing conditions (using the Aquapacer?, Study 4). Between 8 and 15 male national or club standard 200 m breaststroke swimmers participated in each of the studies. The swimmers in Study 2, despite being less well trained than the swimmers in Study 1 and part of a more heterogeneous group in terms of swimming performance, repeatedly demonstrated less random error in pacing, suggesting that the Aquapacer? may be preferable to the poolside clock when swimmers are being required to pace accurately. The Aquapacer? also enabled swimmers to pace accurately at racespecific swimming speeds (until fatigue precluded them from holding pace) (Study 3), and through a change in pace at race-specific speeds (Study 4), which suggests that it may be of use in entraining racing strategies.  相似文献   
9.
Generally, swimmers pace themselves using their own judgement and the poolside clock during swimming training, fitness testing protocols or scientific investigation. The Aquapacer is a new pacing device that can be used to pace the swimming speed or stroke rate of the swimmer. The aims of this study were to determine if breaststroke swimmers could pace accurately during submaximal swimming using a poolside clock (Study 1) and the Aquapacer (Study 2), at swimming speeds at, just above and just below maximal 200 m time-trial speeds (using the Aquapacer, Study 3) and under three different race pacing conditions (using the Aquapacer, Study 4). Between 8 and 15 male national or club standard 200 m breaststroke swimmers participated in each of the studies. The swimmers in Study 2, despite being less well trained than the swimmers in Study 1 and part of a more heterogeneous group in terms of swimming performance, repeatedly demonstrated less random error in pacing, suggesting that the Aquapacer may be preferable to the poolside clock when swimmers are being required to pace accurately. The Aquapacer also enabled swimmers to pace accurately at race-specific swimming speeds (until fatigue precluded them from holding pace) (Study 3), and through a change in pace at race-specific speeds (Study 4), which suggests that it may be of use in entraining racing strategies.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号