首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We tested the hypothesis that backward downhill walking (eccentric component) impairs both voluntary activation and muscle contractile properties in the plantar flexors and delays recovery as compared to a gradient and distance-matched uphill walk. Fourteen males performed two 30-min walking exercises (velocity: 1?m/?s; grade: 25%; load: 12% of body weight), one downhill (DW) and one uphill (UP), in a counterbalanced order, separated by 6?weeks. Neuromuscular test sessions were performed before, after, 24-, 48- and 72-h post-exercise, including motor nerve stimulations during brief (5?s) and sustained (1?min) maximal isometric voluntary contractions of the plantar flexors. DW (?18.1?±?11.1%, P?P?=.15), decreased torque production during brief contractions for at least three days post-exercise (P?P?P?=?.024) and DW (?25.6?±?10.3%, P?P?=?.001) was lower in DW than UP. Peak twitch torque and maximum rates of torque development and relaxation were equally reduced after UP and DW (P?P?P?>?.05). Using a direct comparison, the capacity to drive the plantar flexors during sustained contractions remains sub-optimal during the three-day recovery period in response to non-exhaustive, downhill backward walking in reference to an uphill exercise matched for distance covered.  相似文献   

2.
Abstract

The purpose of this study was to compare the physiological responses of Nordic walking on a specially designed treadmill and Nordic walking on a level over-ground surface. Thirteen participants completed three 1-h Nordic walking training sessions. Following the training sessions, each participant performed two 1600-m over-ground Nordic walking trials at a self-selected pace. Each participant then completed two 1600-m Nordic walking treadmill trials on a Hammer Nordic Walking XTR Treadmill®, at the mean walking speed of their two over-ground Nordic walking trials. Breath-by-breath analysis of oxygen uptake ([Vdot]O2) and heart rate was performed during each trial. Caloric expenditure was calculated using the [Vdot]O2. Rating of perceived exertion (RPE) was assessed at the end of each trial. We found no significant differences in physiological variables collected during the two over-ground Nordic walking trials or the two treadmill Nordic walking trials. Mean walking speed was 106.96±11.49 m · min?1. Mean heart rate during treadmill walking (99±13 beats · min?1) was 22% lower than that during the over-ground condition (126±17 beats · min?1). Mean [Vdot]O2 and mean caloric expenditure were also lower during treadmill walking (15.18±3.81 ml · min?1 · kg?1, 0.08±0.02 kcal · min?1 · kg?1) than over-ground walking (24.16±4.89 ml · min?1 · kg?1, 0.12±0.02 kcal · min?1 · kg?1). Analysis of variance demonstrated that all variables were significantly higher during over-ground Nordic walking (P<0.001). A Mann-Whitney U-test demonstrated that the RPE for over-ground Nordic walking was greater than that for treadmill Nordic walking (P=0.02). Thus over-ground Nordic walking created a greater physiological stress than treadmill Nordic walking performed at the same speed and distance. The reason for this difference may have been the relatively narrow walking and poling decks on the treadmill, which made it difficult for the participants to place their poles correctly and maintain a consistent walking pattern. This would decrease the contribution of the arm muscles to overall oxygen consumption. In conclusion, the Hammer Nordic Walking XTR Treadmill® does not replicate the physiological stress of over-ground Nordic walking. Increasing the width of the decks could eliminate the discrepancy.  相似文献   

3.
Downhill backwards walking causes repeated, cyclical loading of the muscle–tendon unit. The effect this type of repeated loading has on the mechanical behaviour of the Achilles tendon is presently unknown. This study aimed to investigate the biomechanical response of the Achilles tendon aponeurosis complex following a downhill backwards walking protocol. Twenty active males (age: 22.3 ± 3.0 years; mass: 74.7 ± 5.6 kg; height: 1.8 ± 0.7 m) performed 60 min of downhill (8.5°), backwards walking on a treadmill at ?0.67 m · s?1. Data were collected before, immediately post, and 24-, 48- and 168-h post-downhill backwards walking. Achilles tendon aponeurosis elongation, strain and stiffness were measured using ultrasonography. Muscle force decreased immediately post-downhill backward walking (= 0.019). There were increases in Achilles tendon aponeurosis stiffness at 24-h post-downhill backward walking (307 ± 179.6 N · mm?1, = 0.004), and decreases in Achilles tendon aponeurosis strain during maximum voluntary contraction at 24 (3.8 ± 1.7%, = 0.008) and 48 h (3.9 ± 1.8%, = 0.002) post. Repeated cyclical loading of downhill backwards walking affects the behaviour of the muscle–tendon unit, most likely by altering muscle compliance, and these changes result in tendon stiffness increases.  相似文献   

4.
ABSTRACT

Hill running is often used as a foundational training mechanism to build strength and speed. Distance runners in particular are at an increased likelihood of encountering steep hills during training runs. There is limited research regarding downhill running, and there is no research available on the biomechanics of females specifically during downhill running. The purpose of this study was to quantify the differences in loading when running downhill at different grades compared to a level surface in female distance runners to determine the potential risk for injury. Fifteen female distance runners (age: 23.5 ± 4.9 y), who ran 56.3 ± 20.9 km a week participated in this study. Participants ran on a force-instrumented treadmill at 4.0 m/s for 2 min at 0%, ?5%, ?10%, ?15%, and ?20% grades, with 5 min of rest between conditions. Study findings showed increased impact forces (< 0.001), and increased loading rates (< 0.001) with increasing downhill grades compared to level. These results indicate a significantly greater risk of overuse injury to the lower extremity with steeper downhill grades. Individuals need to be aware of these risks to plan and implement training programmes that will increase performance while minimising injury risk.  相似文献   

5.
Abstract

The aim of the study was to assess the relationship between performance-based and laboratory tests for muscular strength and power assessment in older women. Thirty-two women aged 68.8 ± 2.8 years were recruited. All participants were asessed for: (a) two performance-based tests – the box-stepping test (mean 296 ± 51 J) and two-revolution maximum test (mean 7.1 ± 2 kg) performed while pedalling on a cycle ergometer; and (b) muscular function tests – maximal instantaneous peak power jumping on a force platform (mean 1528 ± 279 W); maximal voluntary contraction (MVC) during knee extension (mean 601 ± 571 N) and leg press (mean 626 ± 126 N), and leg press power (mean 483 ± 98 W) on a dynamometer. Using univariate analysis, performance-based tests were compared with laboratory muscle strength and power measurements. Muscle power correlated most strongly with the performance-based tests for both jumping and leg press power (r-values between 0.67 and 0.75; P < 0.01). The correlation with muscle strength measures ranged between 0.48 and 0.61 (P < 0.01). The proposed tests may have particular relevance in geriatric and rehabilitation environments as they represent an easy, practical, and inexpensive alternative for the assessment of muscular strength and power.  相似文献   

6.
This study examined whether avoiding or experiencing exercise-induced muscle damage (EIMD) influences strength gain after downhill walking training. Healthy young males performed treadmill downhill walking (gradient: ?28%, velocity: 5 km · h?1 and load: 10% of body mass) 1 session per week for four weeks using either a ramp-up protocol (n = 16), where exercise duration was gradually increased from 10 to 30, 50 and 70 min over four sessions, or a constant protocol (n = 14), where exercise duration was 40 min for all four sessions. Indirect markers of EIMD were measured throughout the training period. Maximal knee extension torque in eccentric (?1.05 rad·s?1), isometric and concentric (1.05 rad·s?1) conditions were measured at pre- and post-training. The ramp-up group showed no indications of EIMD throughout the training period (e.g., plasma creatine kinase (CK) activity: always <185 U · L?1) while EIMD was evident after the first session in the constant group (CK: peak 485 U · L?1). Both groups significantly increased maximal knee extension torque in all conditions with greater gains in eccentric (ramp-up: +19%, constant: +21%) than isometric (+16%, +15%) and concentric (+12%, +10%) strength without any significant group-difference. The current results suggest that EIMD can be avoided by the ramp-up protocol and is not a major determinant of training-induced strength gain.  相似文献   

7.
Walking is one of the preferred exercises among elderly, but could a prolonged walking increase gait variability, a risk factor for a fall in the elderly? Here we determine whether 30 min of treadmill walking increases coefficient of variation of gait in elderly. Because gait responses to exercise depend on fitness level, we included 15 sedentary and 15 active elderly. Sedentary participants preferred a lower gait speed and made smaller steps than the actives. Step length coefficient of variation decreased ~16.9% by the end of the exercise in both the groups. Stride length coefficient of variation decreased ~9% after 10 minutes of walking, and sedentary elderly showed a slightly larger step width coefficient of variation (~2%) at 10 min than active elderly. Active elderly showed higher walk ratio (step length/cadence) than sedentary in all times of walking, but the times did not differ in both the groups. In conclusion, treadmill gait kinematics differ between sedentary and active elderly, but changes over time are similar in sedentary and active elderly. As a practical implication, 30 min of walking might be a good strategy of exercise for elderly, independently of the fitness level, because it did not increase variability in step and stride kinematics, which is considered a risk of fall in this population.  相似文献   

8.
9.
Abstract

Purpose: To investigate if combined strength and aerobic training can enhance aerobic capacity in the elderly to a similar extent as aerobic training alone when training duration is matched. Methods: Elderly men and women (age 63.2?±?4.7) were randomized into two intervention groups: an aerobic group (AG, n?=?17) and a combined group (CG, n?=?16). Subjects trained 40?minutes three times a week for 12 weeks. Both groups trained 20 minutes at 65% of heart rate reserve on ergometer cycles followed by another 20 minutes on the ergometer cycles for AG and 20-minute strength training for the lower body for CG. The primary outcome was VO2max. Secondary outcomes were maximal voluntary contraction (MVC) in isometric knee extension, 1 repetition maximum in three leg exercises, body fat, waist-to-hip ratio, blood pressure and score on the Health Survey Short Form 36 (SF-36). Results: Both groups improved VO2max (p?<?.01) and MVC (p?<?.001). VO2max increased 17% confidence interval (CI) [7.4–26] in CG and 26% CI [14.1–38.2] in AG, with no significant difference between groups. MVC increased 22% CI [16.3–27.7] in CG and 9% CI [4.6–13.5] in AG with CG improving MVC more than AG (p?<?.01). CG's score on the general health dimension on the SF-36 health survey improved more than AG's score. Conclusion: Elderly can substitute a part of their aerobic training with strength training and still improve VO2max to a clinically significant degree when strength training is performed with large muscle groups subsequently to the aerobic training. Combined training additionally improves strength and self-assessed general health more than aerobic training alone.  相似文献   

10.
Abstract

Mountain biking is a popular recreational pursuit and the physiological demands of cross-country style riding have been well documented. However, little is known regarding the growing discipline of gravity-assisted downhill cycling. We characterised the physiological demands of downhill mountain biking under typical riding conditions. Riding oxygen consumption ([Vdot]O2) and heart rate (HR) were measured on 11 male and eight female experienced downhill cyclists and compared with data during a standardised incremental to maximum ([Vdot]O2max) exercise test. The mean [Vdot]O2 while riding was 23.1 ± 6.9 ml · kg?1 · min?1 or 52 ± 14% of [Vdot]O2max with corresponding heart rates of 146 ± 11 bpm (80 ± 6% HRmax). Over 65% of the ride was in a zone at or above an intensity level associated with improvements in health-related fitness. However, the participants’ heart rates and ratings of perceived exertion were artificially inflated in comparison with the actual metabolic demands of the downhill ride. Substantial muscular fatigue was evident in grip strength, which decreased 5.4 ± 9.4 kg (5.5 ± 11.2%, P = 0.03) post-ride. Participation in downhill mountain biking is associated with significant physiological demands, which are in a range associated with beneficial effects on health-related fitness.  相似文献   

11.
Wearable activity trackers have become popular for tracking individual’s daily physical activity, but little information is available to substantiate the validity of these devices in step counts. Thirty-five healthy individuals completed three conditions of activity tracker measurement: walking/jogging on a treadmill, walking over-ground on an indoor track, and a 24-hour free-living condition. Participants wore 10 activity trackers at the same time for both treadmill and over-ground protocol. Of these 10 activity trackers three were randomly given for 24-hour free-living condition. Correlations of steps measured to steps observed were r?=?0.84 and r?=?0.67 on a treadmill and over-ground protocol, respectively. The mean MAPE (mean absolute percentage error) score for all devices and speeds on a treadmill was 8.2% against manually counted steps. The MAPE value was higher for over-ground walking (9.9%) and even higher for the 24-hour free-living period (18.48%) on step counts. Equivalence testing for step count measurement resulted in a significant level within ±5% for the Fitbit Zip, Withings Pulse, and Jawbone UP24 and within ±10% for the Basis B1 band, Garmin VivoFit, and SenseWear Armband Mini. The results show that the Fitbit Zip and Withings Pulse provided the most accurate measures of step count under all three different conditions (i.e. treadmill, over-ground, and 24-hour condition), and considerable variability in accuracy across monitors and also by speeds and conditions.  相似文献   

12.
Abstract

Walking is a safe, accessible and low cost activity, amenable to change and known to have great potential to increase physical activity levels in sedentary individuals. The objective of this study is to estimate the proportion of the 2009 adult population of England who would attain or exceed vigorous intensity activity (>70% maximum heart rate [HRmax]) by walking at 3 mph. We conducted predictive impact modelling using participants' (n = 1741, aged 25–64 years) cardiovascular fitness data from treadmill walking tests. We combined this data with English population estimates adjusted for age and sex to estimate the numbers of individuals that would exceed 70% HRmax (an intensity considered sufficient for fitness gains) when walking at 3 mph (4.8 km · h?1). We estimate 1.5 million men (95% confidence interval [CI] 0.9–2.2 million) (from 13.4 million corresponding to 11.6% (95% CI 7.0–16.2%)) and 3.9 million women (95% CI 3.0–4.8 million) (from 13.6 million corresponding to 28.6% (95% CI 22.0–35.1%)) in England aged 25–64 years would benefit from regularly walking at 3 mph. In total, a projected 5.4 million individuals (95% CI 3.9–6.9 million) aged 25–64 (from 26.97 million corresponding to 20.1% (95% CI 14.6–25.7%)) could benefit from walking at 3 mph. Our estimates suggest a considerable number of individuals in the English population could receive fitness and health benefits by walking regularly at 3 mph. Physical activity messages that promote walking at this speed may therefore have the potential to significantly impact national fitness levels and health in England.  相似文献   

13.
Lower extremity joint loading during walking is strongly affected by the steepness of the slope and might cause pain and injuries in lower extremity joint structures. One feasible measure to reduce joint loading is the reduction of walking speed. Positive effects have been shown for level walking, but not for graded walking or hiking conditions. The aim of the study was to quantify the effect of walking speed (separated into the two components, step length and cadence) on the joint power of the hip, knee and ankle and to determine the knee joint forces in uphill and downhill walking. Ten participants walked up and down a ramp with step lengths of 0.46, 0.575 and 0.69 m and cadences of 80, 100 and 120 steps per minute. The ramp was equipped with a force platform and the locomotion was filmed with a 60 Hz video camera. Loading of the lower extremity joints was determined using inverse dynamics. A two-dimensional knee model was used to calculate forces in the knee structures during the stance phase. Walking speed affected lower extremity joint loading substantially and significantly. Change of step length caused much greater loading changes for all joints compared with change of cadence; the effects were more distinct in downhill than in uphill walking. The results indicate that lower extremity joint loading can be effectively controlled by varying step length and cadence during graded uphill and downhill walking. Hikers can avoid or reduce pain and injuries by reducing walking speed, particularly in downhill walking.  相似文献   

14.
ABSTRACT

The aims of this study were to estimate the walking cadence required to elicit a VO2reserve (VO2R) of 40% and determine if fitness status moderates the relationship between walking cadence and %VO2R. Twenty participants (10 male, mean(s) age 32(10) years; VO2max 45(10) mL·kg?1·min?1) completed resting and maximal oxygen consumption tests prior to 7 x 5-min bouts of treadmill walking at increasing speed while wearing an Apple Watch and measuring oxygen consumption continuously. The 7 x 5-min exercise bouts were performed at speeds between 3 and 6 km·h?1 with 5-min seated rest following each bout. Walking cadence measured at each treadmill speed was recorded using the Apple Watch “Activity” app. Using Bayesian regression, we predict that participants need a walking cadence of 138 to 140 steps·min?1 to achieve a VO2R of 40%. However, these values are moderated by fitness status such that those with lower fitness can achieve 40% VO2R at a slower walking cadence. The results suggest that those with moderate fitness need to walk at ~40% higher than the currently recommended walking cadence (100 steps·min?1) to elicit moderate-intensity physical activity. However, walking cadence required to achieve moderate-intensity physical activity is moderated by fitness status.  相似文献   

15.
In this study, we examined whether self-selected overground running speed was consistent (1) with perceived overground speed on the treadmill and (2) among barefoot and three footwear conditions. Participants ran across a 20-m runway 10 times for each overground condition, with running speed calculated from kinematic data. For the treadmill condition, the participants were instructed to run at a speed that felt similar to their overground speed. This treadmill speed was chosen upon perception, with the display covered from the participant's view. Repeated-measures analysis of variance was used to detect differences in speed between overground and treadmill running, and also among barefoot and footwear conditions. Coefficient alpha (α) was calculated to determine repeatability of observations in each overground condition. The speed was higher during overground (3.65 ± 0.40 m/s) than treadmill (2.25 ± 0.75 m/s) running but did not differ among the barefoot and the three footwear conditions. Overall, overground speed was highly repeatable within an individual (α = 0.96–0.98). Researchers might consider using self-selected speed when investigating overground running mechanics with different foot–ground interface conditions. The influence of treadmill on the perception of speed may be related to shear force, running duration, joint load control, and/or other psychological factors.  相似文献   

16.
Abstract

We compared starters and non-starters for various isokinetic strength variables in elite women’s soccer players. A convenience sample of 10 starters (mean ± s; age = 20 ± 2 years; height = 170 ± 4 cm; body mass = 65 ± 5 kg) and 7 non-starters (age = 20 ± 1 years; height = 164 ± 3 cm; body mass = 63 ± 4 kg) performed maximal voluntary muscle actions of the leg extensors (concentric) and flexors (eccentric) on an isokinetic dynamometer in order to measure concentric peak torque for the leg extensors, eccentric peak torque for the leg flexors, and the functional hamstrings:quadriceps (H:Q) ratio at 1.047 rad · s-1 and 4.189 rad · s-1 concentric peak torque for the leg extensors was not different between starters and non-starters. However, it was greater at 1.047 rad · s-1 than at 4.189 rad · s-1 in both groups. Eccentric peak torque for the leg flexors was greater for the starters versus non-starters at 4.189 rad · s-1. Eccentric strength of the leg flexors at fast movement velocities may be used as an effective physiological profile and may discriminate between playing status in elite women’s soccer players.  相似文献   

17.
18.
以国际田联规定的竞走定义为依据, 采用高速摄影及影片解析的方法对高红苗在1994 年全国竞走锦标赛和1995 年世界杯竞走赛的竞走技术进行诊断。技术诊断结果如下: (1) 高在10km 赛程中能够保持稳定的步长, 且步长与步频合理; (2) 高的单步技术中腾空时间处于模糊腾空时限。躯干前俯角较大, 身体重心上下起伏较大, 存在被判罚腾空技术犯规的可能性; (3) 高的单步技术中前脚着时脚掌与地面的仰角合理, 支撑腿至垂直部位的膝角正确。  相似文献   

19.
PurposeThis study used downhill running as a model to investigate the repeated bout effect (RBE) on neuromuscular performance, running biomechanics, and metabolic cost of running.MethodsTen healthy recreational male runners performed two 30-min bouts of downhill running (DR1 and DR2) at a –20% slope and 2.8 m/s 3 weeks apart. Neuromuscular fatigue, level running biomechanics during slow and fast running, and running economy parameters were recorded immediately before and after the downhill bouts, and at 24 h, 48 h, 72 h, 96 h, and 168 h thereafter (i.e., follow-up days).ResultsAn RBE was confirmed by attenuated muscle soreness and serum creatine kinase rise after DR2 compared to DR1. An RBE was also observed in maximum voluntary contraction (MVC) force loss and voluntary activation where DR2 resulted in attenuated MVC force loss and voluntary activation immediately after the run and during follow-up days. The downhill running protocol significantly influenced level running biomechanics; an RBE was observed in which center of mass excursion and, therefore, lower-extremity compliance were greater during follow-up days after DR1 compared to DR2. The observed changes in level running biomechanics did not influence the energy cost of running.ConclusionThis study demonstrated evidence of adaptation in neural drive as well as biomechanical changes with the RBE after DR. The higher neural drive resulted in attenuated MVC force loss after the second bout. It can be concluded that the RBE after downhill running manifests as changes to global and central fatigue parameters and running biomechanics without substantially altering the energy cost of running.  相似文献   

20.
BackgroundCompared to conventional racing shoes, Nike Vaporfly 4% running shoes reduce the metabolic cost of level treadmill running by 4%. The reduction is attributed to their lightweight, highly compliant, and resilient midsole foam and a midsole-embedded curved carbon-fiber plate. We investigated whether these shoes also could reduce the metabolic cost of moderate uphill (+3°) and downhill (–3°) grades. We tested the null hypothesis that, compared to conventional racing shoes, highly cushioned shoes with carbon-fiber plates would impart the same ~4% metabolic power (W/kg) savings during uphill and downhill running as they do during level running.MethodsAfter familiarization, 16 competitive male runners performed six 5-min trials (2 shoes × 3 grades) in 2 Nike marathon racing-shoe models (Streak 6 and Vaporfly 4%) on a level, uphill (+3°), and downhill (–3°) treadmill at 13 km/h (3.61 m/s). We measured submaximal oxygen uptake and carbon dioxide production during Minutes 4–5 and calculated metabolic power (W/kg) for each shoe model and grade combination.ResultsCompared to the conventional shoes (Streak 6), the metabolic power in the Vaporfly 4% shoes was 3.83% (level), 2.82% (uphill), and 2.70% (downhill) less (all p < 0.001). The percent of change in metabolic power for uphill running was less compared to level running (p = 0.04; effect size (ES) = 0.561) but was not statistically different between downhill and level running (p = 0.17; ES = 0.356).ConclusionOn a running course with uphill and downhill sections, the metabolic savings and hence performance enhancement provided by Vaporfly 4% shoes would likely be slightly less overall, compared to the savings on a perfectly level race course.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号