首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
BackgroundResidual torque enhancement (rTE) is the increase in torque observed during the isometric steady state following active muscle lengthening when compared with a fixed-end isometric contraction at the same muscle length and level of neuromuscular activation. In the rTE state, owing to an elevated contribution of passive force to total force production, less active force is required, and there is a subsequent reduction in activation. In vivo studies of rTE reporting an activation reduction are often performed using a dynamometer, where participants contract against a rigid restraint, resisting a torque motor. rTE has yet to be investigated during a position task, which involves the displacement of an inertial load with positional control.MethodsA total of 12 participants (6 males, 6 females; age = 22.8 ± 1.1 years, height = 174.7 ± 8.6 cm, mass = 82.1 ± 37.7 kg; mean ± SD) completed torque- and position-matching tasks at 60% maximum voluntary contraction for a fixed-end isometric contraction and an isometric contraction following active lengthening of the ankle dorsiflexors.ResultsThere were no significant differences in activation between torque- and position-matching tasks (p = 0.743), with ∼27% activation reduction following active lengthening for both task types (p < 0.001).ConclusionThese results indicate that rTE is a feature of voluntary, position-controlled contractions. These findings support and extend previous findings of isometric torque-control conditions to position-controlled contractions that represent different tasks of daily living.  相似文献   

2.
3.
To evaluate the effect of concurrent augmented feedback on isometric force output during familiar and unfamiliar muscle movements, 18 men and 21 women, 18 to 23 years of age, completed two isometric exercises: flexion of the thumb (a familiar muscle movement) and abduction of the fifth digit (an unfamiliar movement). The exercises consisted of 10 maximum voluntary isometric contractions lasting 10 s each and separated by 10-s intertrial rest intervals. Concurrent visual feedback was provided during alternate contractions. The order of exercises and trials for feedback was randomly assigned and balanced over subjects. Peak force output during abduction of the fifth digit was significantly (p less than or equal to .01) greater with (4.4 +/- 0.29 kg) than without feedback (4.1 +/- 0.26 kg). Feedback did not influence (p greater than .05) peak force output during thumb flexion (23.2 +/- 1.09 kg vs 22.5 +/- 1.05 kg). Muscular fatigue was more pronounced during thumb flexion without feedback (18.4 +/- 1.17%) than when feedback was provided (11.8 +/- 1.36%). These data suggest that fatigue may increase the effect of feedback on force generation during familiar muscular movements. To obtain maximal isometric force measures during strength testing, augmented feedback should be provided.  相似文献   

4.
Abstract

An investigation was conducted to determine the effects of fatiguing exercise upon the Achilles tendon reflex. Eleven subjects performed one of four exercise tasks on each of four separate days. The exercise conditions involved low-intensity isometric, high-intensity isometric, low-intensity isotonic or high-intensity isotonic exercise. The low-intensity tasks required a 25% MVC load, while the high-intensity conditions required a 50% MVC load. Results showed that low-intensity isometric exercise reduced reflex force, as well as the time needed to reach peak force, while high-intensity exercise produced an enhancement of reflex force. Half-relaxation time was faster after subjects executed low-intensity isometric exercise, but generally somewhat prolonged following high-intensity isometric exercise. Thus, the Achilles tendon reflex may be either enhanced or depressed depending upon the type and intensity of exercise performed.  相似文献   

5.
The neural mechanisms explaining strength increase following mental training by motor imagery (MI) are not clearly understood. While gains are mostly attributed to cortical reorganization, the sub-cortical adaptations have never been investigated. The present study investigated the effects of MI training on muscle force capacity and the related spinal and supraspinal mechanisms. Eighteen young healthy participants (mean age: 22.5?±?2.6) took part in the experiment. They were distributed into two groups: a control group (n?=?9) and an MI training group (n?=?9). The MI group performed seven consecutive sessions (one per day) of imagined maximal isometric plantar flexion (4 blocks of 25 trials per session). The control group did not engage in any physical or mental training. Both groups were tested for the isometric maximal plantar flexion torque (MVC) and the rate of torque development (RTD) before and after the training session. In addition, soleus and medial gastrocnemius spinal and supraspinal adaptations were assessed through the recording of H-reflexes and V-waves, with electrical stimulations of the posterior tibial nerve evoked at rest and during MVC, respectively. After one week, only the MI training group increased both plantar flexion MVC and RTD. The enhancement of muscle torque capacity was accompanied by significant increase of electromyographic activity and V-wave during MVC and of H-reflex at rest. The increased cortical descending neural drive and the excitability of spinal networks at rest could explain the greater RTD and MVC after one week of MI training.  相似文献   

6.
This study compared knee angle-specific neuromuscular adaptations after two low-volume isometric leg press complex training programmes performed at different muscle lengths. Fifteen young males were divided into two groups and trained three times per week for 6 weeks. One group (n?=?8) performed 5–7 sets of 3 s maximum isometric leg press exercise, with 4?min recovery, with knee angle at 85°?±?2° (longer muscle-tendon unit length; L-MTU). The other group (n?=?7) performed the same isometric training at a knee angle of 145°?±?2° (180°?=?full extension; shorter muscle-tendon unit length; S-MTU). During the recovery after each set of isometric exercise, participants performed two CMJ every minute, as a form of complex training. Maximum isometric force (MIF) and rate of force development (RFD) were measured over a wide range of knee angles. Countermovement jump (CMJ) performance and maximum half-squat strength (1RM) were also assessed. Training at S-MTU induced a large increase of MIF (22–58%, p?p?p?=?0.001). In contrast, training at L-MTU, resulted in a moderate and similar (≈12.3%, p?=?0.028) improvement of force at all knee angles. CMJ performance and 1RM were equally increased in both groups after training by 10.4%?±?8.3% and 7.8%?±?4.7% (p?相似文献   

7.
Abstract

The force enhancement of muscle twitch contraction after a maximal voluntary contraction (MVC) has been defined as post-activation potentiation. However, the effects of post-activation potentiation on ballistic movements have not been studied extensively, or the underlying neurophysiologycal mechanism. In the current study, we examined post-activation potentiation and spinal H-reflex excitability in the soleus muscle. Mechanical power during explosive ballistic plantar flexions was measured in 14 males before and after 5 s, 4 min, and 10 min of isometric conditioning (EPFpre, EPF5s, EPF4min, EPF10min, respectively). Four sessions corresponding to four different protocols of isometric conditioning were conducted. The protocols were different in the intensity (10% vs. 100% of MVC) and duration (7 vs. 10 s) of the isometric conditioning. The results showed a significant enhancement in mechanical power in EPF4min compared with EPFpre, only when the isometric conditioning was performed at 100% of MVC for 10 s. No significant changes were observed in the H-related parameters (e.g amplitude, threshold, H/M ratio) after the isometric conditioning. Our results show that to obtain a post-activation potentiation during explosive ballistic movements, the intensity and duration of the isometric conditioning must be controlled. Moreover, the improvement in mechanical power is not related to spinal H-reflex excitability.  相似文献   

8.
In this study we investigated if the occurrence of the sticking region was a result of diminishing potentiation (coinciding delayed muscle activation) or the result of a mechanically poor region in which the muscles can produce less force. A regular one-repetition maximum (1RM) free-weight bench press was compared with isometric bench presses performed at 12 different positions. A lower force at the sticking region compared to the other regions in the isometric bench presses would confirm the mechanically-poor-position hypothesis. Twelve resistance-trained males (age 21.7 ± 1.3 years, mass 78 ± 5.8 kg, height 1.81 ± 0.05 m) were tested in 1RM and in isometric contractions in bench press in 12 different positions, indicated by the vertical distance between barbell and sternum, covering the whole range of motion during the concentric phase. Barbell kinematics and muscle activity were registered. In both types of executions a region of lower force output was observed, which supports the mechanically-poor-position hypothesis. Electromyographic activity of four muscles showed the same pattern in the isometric and 1RM attempts. It was concluded that diminishing effect potentiation could not explain the existence of the sticking region.  相似文献   

9.
BackgroundFemales are typically less fatigable than males during sustained isometric contractions at lower isometric contraction intensities. This sex difference in fatigability becomes more variable during higher intensity isometric and dynamic contractions. While less fatiguing than isometric or concentric contractions, eccentric contractions induce greater and longer lasting impairments in force production. However, it is not clear how muscle weakness influences fatigability in males and females during sustained isometric contractions.MethodsWe investigated the effects of eccentric exercise-induced muscle weakness on time to task failure (TTF) during a sustained submaximal isometric contraction in young (18–30 years) healthy males (n = 9) and females (n = 10). Participants performed a sustained isometric contraction of the dorsiflexors at 35° plantar flexion by matching a 30% maximal voluntary contraction (MVC) torque target until task failure (i.e., falling below 5% of their target torque for ≥2 s). The same sustained isometric contraction was repeated 30 min after 150 maximal eccentric contractions. Agonist and antagonist activation were assessed using surface electromyography over the tibialis anterior and soleus muscles, respectively.ResultsMales were ∼41% stronger than females. Following eccentric exercise both males and females experienced an ∼20% decline in maximal voluntary contraction torque. TTF was ∼34% longer in females than males prior to eccentric exercise-induced muscle weakness. However, following eccentric exercise-induced muscle weakness, this sex-related difference was abolished, with both groups having an ∼45% shorter TTF. Notably, there was ∼100% greater antagonist activation in the female group during the sustained isometric contraction following exercise-induced weakness as compared to the males.ConclusionThis increase in antagonist activation disadvantaged females by decreasing their TTF, resulting in a blunting of their typical fatigability advantage over males.  相似文献   

10.
In this study, we examined the long-term reductions in maximal isometric force (MIF) caused by a protocol of repeated maximal isometric contractions at long muscle length. Furthermore, we wished to ascertain whether the reductions in MIF are dependent on muscle length--that is, are the reductions in MIF more pronounced when the muscle contracts at a short length. The MIF of the elbow flexors of seven young male volunteers was measured at five different elbow angles between 50 degrees and 160 degrees. On a separate day, the participants performed 50 maximal voluntary isometric muscle contractions with the elbow flexors at a lengthened position; that is, with the shoulder hyperextended at 45 degrees and the elbow joint fixed at 140 degrees. Following this exercise, the MIF at the five elbow angles, range of motion, muscle soreness and plasma creatine kinase activity were measured at 24 h intervals for 4 days. On day 1, the decline in MIF was higher at the more acute elbow angles of 50 degrees (42 +/- 8%) and 70 degrees (39 +/- 8%; both P<0.01) than at 90 degrees (26 +/- 4%) and 140 degrees (16 +/- 3%; both P<0.01). No significant reduction in MIF was evident at an elbow angle of 160 degrees. Maximal isometric force at an elbow angle of 140 degrees was fully restored on day 3, whereas at an angle of 50 degrees it remained depressed for the 4 day observation period. Restoration of MIF was a function of the elbow angle, with force recovery being less at the smaller angles. The range of motion was decreased by 14 +/- 2 degrees on day 1 (P<0.01) and did not return to baseline values by day 4. Muscle soreness ratings remained significantly elevated for the 4 day period. Serum creatine kinase peaked on day 1 (522 +/- 129 IU, P<0.01) and decreased thereafter. We conclude that the disproportionate decrease in MIF at the small elbow angles and the length-specific recovery in MIF after repeated maximal isometric contractions at long muscle length may be explained by the presence of overstretched sarcomeres that increased in series compliance of the muscle, therefore causing a rightward shift of the force-length relationship.  相似文献   

11.
In this study, we examined the relative control of reaction time and force in responses of the lower limb. Fourteen female participants (age 21.2 +/- 1.0 years, height 1.62 +/- 0.05 m, body mass 54.1 +/- 6.1 kg; mean +/- s) were instructed to exert their maximal isometric one-leg extension force as quickly as possible in response to an auditory stimulus presented after one of 13 foreperiod durations, ranging from 0.5 to 10.0 s. In the 'irregular condition' each foreperiod was presented in random order, while in the 'regular condition' each foreperiod was repeated consecutively. A significant interactive effect of foreperiod duration and regularity on reaction time was observed (P < 0.001 in two-way ANOVA with repeated measures). In the irregular condition the shorter foreperiod induced a longer reaction time, while in the regular condition the shorter foreperiod induced a shorter reaction time. Peak amplitude of isometric force was affected only by the regularity of foreperiod and there was a significant variation of changes in peak force across participants; nine participants were shown to significantly increase peak force for the regular condition (P < 0.001), three to decrease it (P < 0.05) and two showed no difference. These results indicate the independence of reaction time and response force control in the lower limb motor system. Variation of changes in peak force across participants may be due to the different attention to the bipolar nature of the task requirements such as maximal force and maximal speed.  相似文献   

12.
This study investigated the time needed to change a motor program that specified the elbow flexor muscles to gradually increase the isometric force production from 15% to 75% of one's maximum voluntary contraction (MVC). A double-stimulation paradigm was used with the restriction that subjects (N = 12) be at 15% of their MVC before the presentation of the first stimulus. Subjects reacted to the first stimulus (randomly presented) by gradually increasing their isometric force from 15% to 75% of their MVC and then reacted to the second stimulus by altering the force production in one of four ways: (a) increasing the force to the 75% level rapidly instead of gradually, (b) discontinuing the increase and maintaining the level of force attained, (c) discontinuing all force production, or (d) reversing the direction of force so that it is produced by the elbow extensors. The data revealed that more time was needed to increase the force rapidly than to perform any of the other three conditions.  相似文献   

13.
In this study, we examined the relative control of reaction time and force in responses of the lower limb. Fourteen female participants (age 21.2±1.0 years, height 1.62±0.05?m, body mass 54.1±6.1?kg; mean±s) were instructed to exert their maximal isometric one-leg extension force as quickly as possible in response to an auditory stimulus presented after one of 13 foreperiod durations, ranging from 0.5 to 10.0?s. In the ‘irregular condition’ each foreperiod was presented in random order, while in the ‘regular condition’ each foreperiod was repeated consecutively. A significant interactive effect of foreperiod duration and regularity on reaction time was observed (P?<?0.001 in two-way ANOVA with repeated measures). In the irregular condition the shorter foreperiod induced a longer reaction time, while in the regular condition the shorter foreperiod induced a shorter reaction time. Peak amplitude of isometric force was affected only by the regularity of foreperiod and there was a significant variation of changes in peak force across participants; nine participants were shown to significantly increase peak force for the regular condition (P?<?0.001), three to decrease it (P?<?0.05) and two showed no difference. These results indicate the independence of reaction time and response force control in the lower limb motor system. Variation of changes in peak force across participants may be due to the different attention to the bipolar nature of the task requirements such as maximal force and maximal speed.  相似文献   

14.
Force and electromyographic (EMG) activity of the biceps and triceps brachii were measured in 15 strength-trained men during maximal isometric action of the forearm flexors, with the elbow at 90 degrees, following 20-s periods of psyching (PSY), reading aloud (RA), and mental arithmetic (MA). Perceived arousal and attentional focus ratings for PSY were greater than those obtained for RA and MA, which were undifferentiated. Perceived effort, biceps and triceps EMG, and maximal force did not differ across conditions. Therefore, in highly trained men under conditions of brief exertion, when the biomechanics of the muscular action were controlled, psyching resulted in a perception of enhanced readiness but did not influence force or muscular activation differently from psychological states that were preceded by distraction.  相似文献   

15.
ABSTRACT

This study aimed to evaluate responsiveness (ability to detect change) of isometric force-time measures to neuromuscular fatigue in resistance-trained participants using two differing protocols that modified both the instructions provided to participants and the duration of the test. Both protocols were completed at two knee joint angles in the isometric squat test. Ten participants volunteered to take part in this study (age: 27.0 ± 4.5 years, strength training experience: 7.7 ± 2.6 years). Isometric peak force (ISqTpeak) and isometric explosive force (ISqTexp) test protocols were assessed at two joint angles (knee angle 100° and 125°) pre-high intensity strength training, immediately post strength training, 24-h post, 48-h post and analysed for peak and RFD performance. Participants completed eight sets of three repetitions of the back-squat exercise as the high-intensity strength training. Results showed the highest standardised response means (SRM) detected was peak force using the ISqTpeak 100, SRM ?1.97 compared to an SRM of ?1.31 for RFD 200 ms in the ISqTexp 125. Peak force was the most responsive variable using the ISqTpeak protocol, whereas the ISqTexp protocol was most responsive for RFD measures. Therefore, ISqTpeak and ISqTexp test protocols should not be used interchangeably to evaluate RFD variables.  相似文献   

16.
Abstract

In this study, we examined the long-term reductions in maximal isometric force (MIF) caused by a protocol of repeated maximal isometric contractions at long muscle length. Furthermore, we wished to ascertain whether the reductions in MIF are dependent on muscle length — that is, are the reductions in MIF more pronounced when the muscle contracts at a short length. The MIF of the elbow flexors of seven young male volunteers was measured at five different elbow angles between 50° and 160°. On a separate day, the participants performed 50 maximal voluntary isometric muscle contractions with the elbow flexors at a lengthened positions that is, with the shoulder hyperextended at 45° and the elbow joint fixed at 140°. Following this exercise, the MIF at the five elbow angles, range of motion, muscle soreness and plasma creatine kinase activity were measured at 24 h intervals for 4 days. On day 1, the decline in MIF was higher at the more acute elbow angles of 50° (42±8%) and 70° (39±8%; both P<0.01) than at 90° (26±4%) and 140° (16±3%; both P<0.01). No significant reduction in MIF was evident at an elbow angle of 160°. Maximal isometric force at an elbow angle of 140° was fully restored on day 3, whereas at an angle of 50° it remained depressed for the 4 day observation period. Restoration of MIF was a function of the elbow angle, with force recovery being less at the smaller angles. The range of motion was decreased by 14±2° on day 1 (P<0.01) and did not return to baseline values by day 4. Muscle soreness ratings remained significantly elevated for the 4 day period. Serum creatine kinase peaked on day 1 (522±129 IU, P<0.01) and decreased thereafter. We conclude that the disproportionate decrease in MIF at the small elbow angles and the length-specific recovery in MIF after repeated maximal isometric contractions at long muscle length may be explained by the presence of overstretched sarcomeres that increased in series compliance of the muscle, therefore causing a rightward shift of the force-length relationship.  相似文献   

17.
This study examined whether short-term maximal resistance training employing fast-velocity eccentric knee extensor actions would induce improvements in maximal isometric torque and rate of force development (RFD) at early (<100 ms) and late phases (>100 ms) of rising torque. Twenty healthy men were assigned to two experimental groups: eccentric resistance training (TG) or control (CG). Participants on the TG trained three days a week for a total of eight weeks. Training consisted of maximal unilateral eccentric knee extensors actions performed at 180°s-1. Maximal isometric knee extensor torque (MVC) and incremental RFD in successive 50 ms time-windows from the onset contraction were analysed in absolute terms (RFDINC) or when normalised relative to MVC (RFDREL). After eight weeks, TG demonstrated increases in MVC (28%), RFDINC (0–50 ms: 30%; 50–100 ms: 31%) and RFDREL (0–50 ms: 29%; 50–100 ms: 32%). Moreover, no changes in the late phase of incremental RFD were observed in TG. No changes were found in the CG. In summary, we have demonstrated, in active individuals, that a short period of resistance training performed with eccentric fast-velocity isokinetic muscle contractions is able to enhance RFDINC and RFDREL obtained at the early phase of rising joint torque.  相似文献   

18.
We have previously argued that there may actually be no significant eccentric, but rather predominantly an isometric action of the hamstring muscle fibres during the swing phase of high-speed running when the attachment points of the hamstrings are moving apart. Based on this we suggested that isometric rather than eccentric exercises are a more specific way of conditioning the hamstrings for high-speed running. In this review we argue that some of the presumed beneficial adaptations following eccentric training may actually not be related to the eccentric muscle fibre action, but to other factors such as exercise intensity. Furthermore, we discuss several disadvantages associated with commonly used eccentric hamstring exercises. Subsequently, we argue that high-intensity isometric exercises in which the series elastic element stretches and recoils may be equally or even more effective at conditioning the hamstrings for high-speed running, since they also avoid some of the negative side effects associated with eccentric training. We provide several criteria that exercises should fulfil to effectively condition the hamstrings for high-speed running. Adherence to these criteria will guarantee specificity with regards to hamstrings functioning during running. Practical examples of isometric exercises that likely meet several criteria are provided.  相似文献   

19.
Abstract

To evaluate the effect of concurrent augmented feedback on isometric force output during familiar and unfamiliar muscle movements, 18 men and 21 women, 18 to 23 years of age, completed two isometric exercises: flexion of the thumb (a familiar muscle movement) and abduction of the fifth digit (an unfamiliar movement). The exercises consisted of 10 maximum voluntary isometric contractions lasting 10 s each and separated by 10-s intertrial rest intervals. Concurrent visual feedback was provided during alternate contractions. The order of exercises and trials for feedback was randomly assigned and balanced over subjects. Peak force output during abduction of the fifth digit was significantly (p ≤ .01) greater with (4.4 ± 0.29 kg) than without feedback (4.1 ± 0.26 kg). Feedback did not influence (p > .05) peak force output during thumb flexion (232 ±1.09 kg vs 22.5± 1.05 kg). Muscular fatigue was more pronounced during thumb flexion without feedback (18.4 ± 1.17%) than when feedback was provided (11.8 ±136%). These data suggest that fatigue may increase the effect of feedback on force generation during familiar muscular movements. To obtain maximal isometric force measures during strength testing, augmented feedback should be provided.  相似文献   

20.
Two mechanisms have been suggested to explain stretching-induced maximum force depression: a mechanical alteration in the stretched muscle and an impairment of neural activation. Electrical stimulation allows standardization of the level of muscle activation without being limited by neural control. The aim of this study was to evaluate the stretching-induced changes in the electrical and mechanical properties of muscle during electrically elicited contractions. Twelve participants (age 22 +/- 1 years; body mass 75 +/- 2 kg; stature 1.79 +/- 0.02 m; mean +/- standard error) underwent six electrical stimulations of the medial gastrocnemius muscle before and after stretching. During the contractions, surface electromyogram (EMG) and mechanomyogram (MMG) were recorded simultaneously together with force. After stretching we found: (i) no differences in EMG parameters; (ii) MMG amplitude decreased by 4 +/- 1% (P < 0.05); and (iii) the peak force, the peak rate of force development, and the acceleration peak of force development decreased by 12 +/- 3%, 14 +/- 1%, and 24 +/- 5%, respectively (P < 0.05). In conclusion, acute passive stretching did not change EMG properties but altered the mechanical characteristics of the contracting muscle. Indeed, muscle force-generating capacity and stiffness of the muscle-tendon unit were significantly impaired.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号