首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
不少文章都对焦点弦的有关性质的研究以及如何进行探究性学习进行了精彩的阐述,令人深有感触.本文试从命题的角度对此进行进一步的挖掘和探究.不妨设抛物线y2=2px(p>0),则焦点Fp2,0,准线l的方程:x=-p2.直线l1交抛物线于A(x1,y1)、B(x2,y2)两点,交x轴于点C(c,0),又作AA1⊥l,BB1⊥l,垂足分别为A1、B1(如图1所示).探究1若直线l1过焦点F,则y1y2=-p2(定值).那么其逆命题是否成立呢?分析:当l1⊥x轴时,命题显然成立.当l1与x轴不垂直时,设直线l1的方程为x=my+n,联立方程组y2=2px,x=my+n,消去x得y2-2pmy-2pn=0,∴y1y2=-2pn,∵y1y2=-p2,∴n=p2,∴…  相似文献   

2.
定理过点(k,0)作直线AB和抛物线y2=2px(p>0)交于A(x1,y1)、B(x2,y2)两点,则有x1x2=k2,y1y2=-2pk.证明设直线AB的方程为x=my+k,代入y2=2px,有y2-2pmy-2pk=0.因为直线AB与抛物线相交于A(x1,y1)、B(x2,y2)两点,于是y1y2=-2pk.由y21y22=4p2x1x2,得到x1x2=y21y224p2=4p2k24p2=k2.推论(焦点弦定理)若AB是过抛物线y2=2px(p>0)的焦点的弦,且A(x1,y1),B(x2,y2),则有y1y2=-p2,x1x2=p24.在解决某些与抛物线相关问题的时候,应用该定理和推论的内容,能简洁、快速地解题,同时也能达到优化解题过程的目的.例1如图1所示,线段AB过x轴正半轴上一点M(m,0…  相似文献   

3.
题如图1,过抛物线y2=2px(p>0)焦点F的一条直线和抛物线相交,交点的纵坐标为y1、y2.求证y1y2=-p2.证法1由已知,抛物线焦点F(2p,0),设过点F的直线与抛物线交于点A(x1,y1),B(x2,y2).若AB⊥x轴,则y1=p,y2=-p.所以y1y2=-p2.若AB与x轴不垂直,设直线AB的方程为y=k(x-2p),与y2=2px联立,得y2-2kpy-p2=0,因为y1、y2是方程的2根,所以y1y2=-p2.证法2因直线AB过定点F且与x轴不平行,所以设直线AB的方程为x=my 2p.代入y2=2px得y2-2pmy-p2=0,因为y1、y2是方程的2根,所以y1y2=-p2.法1是常规解法,法2设出直线方程,避免了讨论直线斜率的存在性,是一种很…  相似文献   

4.
本文将对以下两个与抛物线有关的命题进行探究.命题1在抛物线y2=2px(p>0)中,过顶点O作两直线交抛物线于A、B两点,若(OA|→). (DB|→)=0,则直线AB过x轴上一定点(2p,0).命题2在抛物线y2=2px(p>0)中,过焦点F(p/2,0)作不过顶点O的一条直线交抛物线  相似文献   

5.
本文探讨抛物线对顶点张直角的弦的几个性质及应用.设点A,B在抛物线y2=2px或x2=2py(p>0)上,且OA⊥OB(O为坐标原点).1、对抛物线y2=2px,弦AB过定点(2p,0),反之也成立;对抛物线y2=2px弦AB过定点(0,2p),反之也成立.2、若直线OA的斜率为k(k≠0),则:(1)对抛物线y2=2px,弦AB的中点为(p(k2 1/k2),p(?k 1/k));对抛物线x2=2py,弦AB的中点为(p(k?1/k),p(k2 1/k2)).(2)弦AB的长l=2p(k2 k12 12)2?94;(3)△AOB面积2S2p2k1k= .下面只对y2=2px的情形加以证明,对x2=2py的情形类似可证.证明由???yy2==k2x,px,得A(2k p2,2kp).由OA⊥OB可得B(2pk2,?…  相似文献   

6.
定理已知圆锥曲线的准线与x轴相交于点E,过相应焦点F的直线与圆锥曲线相交于A、B两点,BC//x轴交准线于C点,则AC经过线段EF的中点.证明(1)若圆锥曲线为抛物线,不妨设抛物线的方程为2y=2px(p>0).当直线AB的斜率不存在时,显然定理成立.当直线AB的斜率存在时,可设直线AB的方程为:y=  相似文献   

7.
抛物线的焦点弦有着很多值得思考的性质,这里略举一二.图1(一)过抛物线y2=2px的焦点F的一条直线和此抛物线交于两点A、B,如图1,其中A(x1,y1),B(x2,y2),则弦长|AB|=x1 x2 p.这由抛物线的定义很容易得到.(二)过抛物线y2=2px的焦点F的一条直线和此抛物线交于两点A、B,如图1,其中A(x1,y1),B(x2,y2),则y1·y2=-p2.证明:抛物线y2=2px与直线AB:x=ky 2p,联立得y2-2kpy-p2=0,所以由韦达定理得y1·y2=-p2.(三)过抛物线y2=2px的焦点F的一条直线和此抛物线交于两点A、B,令|AF|=r1,|BF|=r2,则r11 r12=2p.设抛物线的焦点F2p,0,当直线的斜率不存在…  相似文献   

8.
<正>试题已知抛物线C:x2=-2py经过点(2,-1).(Ⅰ)求抛物线C的方程及其准线方程;(Ⅱ)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M、N,直线y=-1分别交直线OM、ON于点A、B,求证:以AB为直径的圆经过y轴上的两个定点.这是2019年北京卷理科第18题,我们首先给出试题的一种新解法.解答 (Ⅰ) 由抛物线C:x2=-2py经过点(2,-1),则4=2p,所以抛物线C的方程为x2=-4y  相似文献   

9.
经过对抛物线上存在轴对称点的条件的探究,获得了下面的结果.定理1:设抛物线E:x2=2py(p>0)和直线l:y=kx b,当且仅当2k22 1相似文献   

10.
设直线l经过抛物线C:y2=2px(p>0)的焦点F,且与抛物线C交于A、B两点(直线AB的倾斜角为α),设A (x1,y1),B(x2,y2),O为坐标原点,准线方程为:x=-p/2,则关于抛物线C的焦点弦有以下九条常用的性质:(1)2x1x2=p/4;(2)y1y2=-p2.  相似文献   

11.
1 解析法 解析几何是用代数的方法去研究几何,所以它能解决纯几何方法不易解决的几何问题(如对称问题等). 例1(2007年四川文科卷.10题)已知抛物线y=-x2 +3上存在关于直线x+y=0对称的相异两点A,B,则|AB|等于(). A.3 B.4 C.3√2 D.4√2 分析:直线AB必与直线x+y=0垂直,且线段AB的中点必在直线x+y=0上,因得解法如下. 解析:∵点A,B关于直线x+y=0对称,∴设直线AB的方程为y=x+m.  相似文献   

12.
抛物线的焦点弦是抛物线定义与性质的交汇点.本文就与其相关的切线探索出若干性质.题目抛物线y2=2px(p>0)上不同两点A、B处的切线交于点Q.求证:若AB过抛物线的焦点F,则(1)AQ⊥BQ;(2)点Q在抛物线的准线上;(3)QF⊥AB.证明设A(x1,y1),B(x2,y2),Q(x0,y0).对于y2=2px求导,有2yy’=2p,得  相似文献   

13.
结论 若A(x1,y1)、B(x2,y2)是抛物线y^2=2px上的任意两相异点.则直线AB的方程为  相似文献   

14.
文[1]对高中数学(试验修订本·必修)第二册(上)P130例2:“直线y=x?2与抛物线y2=2x相交于点A、B,求证:OA⊥OB(如图1)”进行探究,得到如下结论:若直线l与抛物线y2=2px相交于点A、B,则OA⊥OB?直线l过定点(2p,0).文[2]在上述命题的基础上作了进一步的探究,得到如下的定理:定理若直线l与抛物线y2=2px相交于点A、B,C(x0,y0)为抛物线上不同于点A、B的一定点,若直线CA、CB的斜率存在且分别记为k CA、k CB,则k CA?k CB=d(d为定值)?直线l过定点200(2,)2y p yp?d?.(如上右图)本文在上述定理的基础上作进一步探究,对定理进行引申.1由“k CA…  相似文献   

15.
解析几何中有这样一个结论,即命题1在抛物线y2=2px(p>0)中,过顶点O作互相垂直的两直线交抛物线于A,B两点,连A,B交x轴于E点,则E为定点.图1证设A(x1,y1),B(x2,y2),直线AB:x=ky+m,代入y2=2px,得y2-2pky-2pm=0.故y1y2=-2pm.又OA⊥OB,得x1x2+y1y2=0,(1)21y22故y4p2+y1y2=0,m2-2pm=0,m=2p,或m=0(舍).即E点坐标为(2p,0)是定点.利用这个命题,求点O在直线AB上的射影的轨迹,显得特别方便,因OE为定长,就能看出所求轨迹是一个以OE为直径的圆(去掉点O).y1y2=b2m2-a2b2a2+b2k2,又DA=(x1+a,y1),DB=(x2+a,y2),因DA⊥DB,故DA·DB=0,即(x1+a)(x…  相似文献   

16.
1命题命题1若A B是椭圆22C1:ax2+by2=1的一条弦,且弦AB的中点为M(xM,y M),则椭圆22222C:(2x M x)(2y My)a b?+?=1经过A、B两点.证明设点A(x A,y A)、B(x B,y B),则由M是弦AB的中点,可知,x B=2x M?xA,y B=2y M?yA,由点B在椭圆C1上,知(2x M?x A)2/a2+(2y M?y A)2/b2=1,所以点A在椭圆C2上.同理可知点B也在椭圆C2上,故椭圆C2经过A,B两点.类似地有:命题2若AB是双曲线22C1:ax2?by2=1的一条弦,且弦AB的中点为M(xM,y M),则双曲线22222C:(2x M x)(2y My)1a b???=经过A,B两点.命题3若AB是抛物线y2=2px的一条弦,且弦AB的中点为…  相似文献   

17.
正北京市丰台区2013~2014学年度第一学期期末练习高二数学(理科)第19题(满分13分)即倒数第二题是:统考题已知抛物线C:y2=2px(p0),过抛物线C的焦点F的直线l交抛物线于A、B两点.(1)若抛物线的准线为x=-1,直线l的斜率为1,求线段AB的长;(2)过B作x轴的平行线交抛物线的准线于点D,求证:  相似文献   

18.
<正>【深度改编题】【原题】如图,已知直线与抛物线y2=2px(p>0)交于A,B两点,且OA⊥OB,OD⊥AB交AB于点D,点D的坐标为(2,1),求p的值.【解题思路】因为OD⊥AB,D (2,1),所以kOD=1/2,则kAB=-2.直线AB的方程为y-1=-2(x-2),即y=-2x+5.设直线AB交抛物线y2=2px于点A (x1,y1),B (x2,y2),  相似文献   

19.
题目:已知椭圆x92 y42=1上总有关于直线l:y=x m对称的两点,试求m的取值范围.一、运用二次方程的判别式求参数的取值范围解法1:设A(x1,y1)、B(x2,y2)是椭圆上关于直线l对称的两点,线段AB的中点为C(x0,y0).因为AB⊥l,所以直线AB的斜率为-1,于是再设直线AB的方程:y=-x b.由于A、B点既在椭圆上,又在垂直于l的直线AB上,点C既在直线AB:y0=-x0 b上,又在直线l:y0=x0 m上,从而联立:x29 y42=1y=-x b,消去y得:13x2-18bx 9b2-36=0,依韦达定理和中点坐标公式得:2x0=x1 x2=1183b,∴x0=193b.从而y0=-x0 b=143b.于是有413b=193b m,得m=-153b,而由于A…  相似文献   

20.
本文介绍经过抛物线y^2=2px(p〉0)上两点A(x1,y1)、B(x2,y2)的直线AB方程,并说明它在解题中的应用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号