首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
不等式的证明是国内外数学竞赛中的热点问题 ,尽管这些不等式的形式各异 ,但很多不等式的证明却可以用两个基本不等式而巧妙地得到解决 .本文所述的基本不等式为 :a + b≥ 2 ab(a,b∈ R+ )及a1+ a2 +… + ann ≥ n a1a2 … an(ai ∈ R+ ) .下面看一些具体例子 .1 用 a + b≥ 2 ab(a,b∈ R+ )证明竞赛中不等式  例 1 设 x1,x2 ,x3,… ,xn均为正数 ,求证 :x21x2+ x22x3+ x23x4+… + x2n- 1xn+ x2nx1≥ x1+ x2+… + xn.(1 984年全国高中数学联赛题 )证明 :由基本不等式 a + b≥ 2 ab(a,b∈R+ )得x22x1+ x1≥ 2 x2 ,x23x2+ x2 ≥ 2 x3,… …  相似文献   

2.
在近年的高考数学试题中 ,常以数列递推式中不等式的证明作为能力型试题 .这类问题综合性强、思维容量大、能力要求高 ,是同学们感到很棘手的一类问题本文通过具体的例子说明解这类问题的几种常用方法 .一、数学归纳法例 1 已知数列 an ,对任意n∈N ,均有an >0 ,且a2 n ≤an-an + 1 ,求证 :当n≥ 2时 ,an <1n +1.证明  ( 1)当n =2时 ,a2 ≤a1 ( 1-a1 )≤ a1 +( 1-a1 )22=14 <13 =12 +1.命题成立 .( 2 )假设当n =k(k≥ 2 )时 ,命题成立 ,即有   ak <1k+1≤ 13 (k≥ 2 ) .当n =k +1时 ,由题设有ak+ 1 ≤ak-a2 k.令 f(x) =x-x2 ,则f(x) =…  相似文献   

3.
不等式的证明是中学数学的一个难点,分式不等式的证明更为困难.本文提供了利用均值不等式配对证明一类分式不等式的思路. 一、如果不等式是形如sum form n to i=1 Ai2/Bi≥M的形式,且Ai,Bi(i=1,2,…,n),M均为正数,则可对Ai2/Bi配上Bi·P,成对利用均值不等式和不等式的基本性质证明. 例1 设a,b,c∈R+,求证:a2/(b+c)+b2/(c+a)+c2/(a+b)≥(a+b+c)/2. 证明:由a2/(b+c)+(b+c)/4≥a,b2/(c+a)+(c+a)/4≥b,c2/(a+b)+(a+b)/4≥c.上面三式相加得求证不等式.  相似文献   

4.
沈杰 《新高考》2007,(4):23-24
数列和不等式都是中学数学中非常重要的内容,也是高考的热点.近年来对数列和不等式的综合考查常被设置为高考压轴题,因为数列不等式的证明问题既要考虑不等式的证明方法,又要结合数列的特点,故综合性强,难度大.本文借助几道典型的高考试题,介绍数列不等式的常用证明方法.一、平均值不等式法例1已知数列{xn}由下列条件确定:x1=a>0,xn 1=21xn xan,n∈N*.证明:对任意的n∈N*且n≥2,总有xn≥a.证明由x1=a>0及xn 1=21xn xan,可归纳得xn>0.从而有xn 1=21xn xan≥xn.xan=a(n∈N*),所以当n≥2时,xn≥a成立.点评由于xn xan是“和”的形式,且xn、xan…  相似文献   

5.
文[1]用均值不等式广泛地解决了一类分式不等式的证明 .本文来介绍这类不等式的一般性证法 ,证明中用到柯西不等式及其推论 .柯西不等式设 ai,bi ∈ R( i =1 ,2 ,… ,n) ,则 ( a21 + a22 +… + a2n) ( b21 + b22 +… + b2n)≥( a1 b1 + a2 b2 +… + anbn) 2推论 设 ai,bi ∈ R+( i =1 ,2 ,… ,n) ,则a21b1+ a22b2+… + a2nbn≥( a1 + a2 +… + an) 2b1 + b2 +… + bn下面结合文 [1 ]中的一例阐述推论的应用 .例 1 设 ∑ni=1xi =1 ,xi ∈ R+,i =1 ,2 ,… ,n,证明 :x11 -x1+ x21 -x2+… + xn1 -xn≥ nn -1左边 =x21x1 -x21+ x22x2 -x22+……  相似文献   

6.
基本不等式a2+b2≥2ab在不等式的证明中起重要作用,但有些不等式直接用它去证明比较困难,而应用该不等式的变形去证明却比较方便. 变形1a2+b2≥2ab a2+b2≥1/2(a+b)2. 例 1 已知 a,b,c∈R+,且a+b+c=5,a2+b2+c2=9,试证明:1≤a、b、c≤7/3. 证明:由已知 a+b=5-c,a2+b2≥9-c2,∵a2+b2≥1/2(a+b)2,∴9-c2≥1/2(5-c)2,∴3c2-10c+7≤0,∴1≤c≤7/3,同理1≤a≤7/3,1≤b≤7/3. 例2 设a,b∈R+,且a+b=1,求证:(a+1/2)2+(b+1/b)2≥25/2.  相似文献   

7.
一个不等式的推广   总被引:3,自引:0,他引:3  
文 [1 ]给出了下面一个三角形不等式 :设△ABC的三边长分别为a、b、c ,则13 ≤ a2 +b2 +c2(a +b +c) 2 <12 ,①当且仅当a =b =c时等号成立 .本文将不等式①推广为 :设△ABC的三边长分别为a、b、c .对于任意正整数n ,n >1 ,有13 n - 1≤ an+bn+cn(a +b +c) n<12 n- 1,②当且仅当a =b =c时等号成立 .证明 :根据文 [2 ],有an+bn+cn3 ≥ a +b +c3n,当且仅当a =b =c时等号成立 .由此易知第一个不等式成立 ,取等号的条件也成立 .下面证明第二个不等式 ,这等价于an+bn+cn<12 n - 1(a +b +c) n.③用数学归纳法 .当n =2时 ,由式①知式③成立 .设n …  相似文献   

8.
在国内外数学竞赛以及一些数学杂志上出现了一类分式不等式 ,许多专家都曾对这类不等式作过研究 ,指出了较多好的证法 .本文旨在说明这类分式不等式有一种统一初等证法 ,就是都利用一个常见的简单不等式 (a1+a2 +… +an) (1a1+ 1a2 +… +1an)≥n2 (ai >0 ,i=1 ,2 ,3,… ,n)加以证明的 .问题 1  (英国竞赛题 )设正数a1,a2 ,… ,an 之和为S ,求证 :a1 S -a1+a2S -a2+… +anS -an≥ nn - 1 (n∈N ,n≥ 2 ) .解析 原不等式等价于(a1 S-a1 +1 ) +(a2S-a2 +1 ) +… +(anS-an +1 )≥ nn - 1 +n ,即 SS-a1+ SS-a2 +… + SS-an ≥ n2n- 1 ,即…  相似文献   

9.
由不等式a2 + (λb) 2 ≥ 2λab(a,b∈R ,λ为参数 ) ,得a2 ≥ 2λab-λ2 b2 .由此得到如下一个推论 :若b >0 ,则a2b ≥ 2λa-λ2 b. ( )对于参数λ的任一实数值 ,不等式 ( )总是成立的 ,当且仅当λ =ab 时 ,取等号 .值得重视和有趣的是应用这个不等式可以简捷、巧妙地证明一类分式不等式 .现举例说明 .例 1 设xi >0 (i =1 ,2 ,… ,n) ,求证 :∑ni=1x2 ixi+1≥ ∑ni=1xi(xn+1 =x1 ) .证明 由xi >0及 ( ) ,得x2 ixi+1≥ 2λxi-λ2 xi+1 .∴∑ni=1x2 ixi+1≥ ∑ni=1(2λxi-λ2 xi+1 )=(2λ -λ2 ) ∑ni=1xi.取λ=1 ,原不等式得证 .例 2 设…  相似文献   

10.
等比数列求和公式为Sn=a1(11--qq n)(q≠1),有时用此公式证明不等式可简化证明过程.将数列知识与不等式知识相融合,既可培养学生思维的灵活性和创造性,又可简化思路、优化解题过程.一、直接公式法例1求证:1+21!+31!+41!+…+n1!<2(n≥2,n缀N).证明1+12!+31!+41!+…+n1!<1+12+212+123+…+21n-1=1×(11--121n)2=2-12n-1<2(n≥2,n缀N).故原不等式成立.小结本题直接运用等比数列求和公式,起到了立竿见影的效果.二、求和公式的逆用例2已知等差数列{an}和等比数列{bn}中a1=b1=a,a2=b2=b(b>a>0).求证:当n>2且n缀N时,bn>an.证明an=a+(n-1)(b-a)…  相似文献   

11.
放缩法证明不等式是两考自命题看青睐的方法之一,放缩的方法很多,其中由真分数性质(即b/ab)可得n-1/nn+1/n(n≥2,n∈N*)就可以运用放缩法证明不等式.  相似文献   

12.
文 [1]得出H .Guggenheimer不等式rnahna+rnbhnb+rnchnc≥ 3 (n≥ 1) .①文 [2 ]将式①加强为rarbrchahbhc≥ 1.②本文将证明两个更强的结论 .命题 1 设△ABC的高和旁切圆 ,外接圆 ,内切圆半径分别为ha、hb、hc,ra、rb、rc,R ,r .在n≥ 1时 ,有rnahna+rnbhnb+rnchnc≥ 3 2R -r3rn.③引理[3 ]  设p为△ABC的半周长 ,则有∑ara=2p( 2R -r) .④其中“∑”表示循环和 .命题的证明 :由三角形中的恒等式aha=2pr等和式④ ,以及不等式 an+bn+cn3 ≥a +b +c3n 知rnahna+rnbhnb+rnchnc=∑rnahna=∑(ara) n(aha) n=∑(ara) n( 2pr) n ≥ 3( 2pr)…  相似文献   

13.
一、比较法(包括“作差法”和“作商法”)“作差法”即根据“‘a≥b’等价于‘a-b≥0’”,将要证明的“a≥b”型不等式转化为“a-b≥0”型不等式去证.其基本步骤是:1.作差;2.变形;3.与0比较大小.其中的“变形”可以变成平方和,也可以变成因式的积或常数.“作商法”即根据“a,b>0时,‘a>b’等价于‘ba>1’”,将要证明的“a>b”型不等式转化为“ab>1”去证.其基本步骤是:1.作商;2.变形;3.与1比较大小.例1若a,b缀R+,n,k缀N,且n>k,求证:an+bn≥akbn-k+an-kbk(当且仅当a=b时,取“=”号).证明an+bn-(akbn-k+an-kbk)=(ak-bk)(an-k-bn-k).又k,(n-k)…  相似文献   

14.
构造向量巧证不等式   总被引:1,自引:0,他引:1  
向量是高中教材的新增内容 ,作为现代数学重要标志之一的向量引入中学数学后 ,给中学数学带来无限生机。笔者在阅读文 [1 ]发现 ,该文所举的各个例子 ,均可通过构造向量 ,利用向量不等式 :m·n≤ |m|·|n|( )轻松获证 ,显示了向量在证明不等式时的独特威力。例 1 已知a、b、c∈R ,且a +2b +3c=6,求证a2+2b2 +3c2 ≥ 6。证明 构造向量 :m =(a ,2b ,3c) ,n =( 1 ,2 ,3 ) ,由向量不等式 ( )得6=a +2b +3c≤a2 +2b2 +3c2 · 1 +2 +3 ,∴a2 +2b2 +3c2 ≥ 6。例 2 已知 :a、b∈R+ ,且a +b =1 ,求证(a +1a) 2 +(b +1b) 2 ≥2 52 。证明 构造…  相似文献   

15.
从一类对象或一个范畴的研究过渡到更广的一类对象或更广范畴上的研究 ,称为推广 ,类比是数学命题推广的一个工具 .从逻辑上说 ,推广就是将数学命题的外延扩大 ,来研究它的内涵变化特点 .在历年高考试题中 ,推广类试题曾多次出现 .一、在不等式中的推广【例 1】 已知x∈ (0 ,+∞ ) ,由不等式x+ 1x ≥ 2 ,x + 4x2 =x2 + x2 + 4x2 ≥ 3,… ,由此启发我们可以推广为x + axn ≥n + 1(n ∈N ) ,则a=     .分析 :首先a >0 ,由基本不等式“A≥G(A为算术平均值、G为几何平均值 )”得x+ axn =xn + xn +… + xn + axn≥ (n+ 1)n+ 1 xn · xn ……  相似文献   

16.
<正>用数学归纳法证明数学命题时的基本步骤:(1)检验n=n_0(n_0∈N*)时成立;(2)假设n=k(k∈N*,k≥n_0)时成立,由n=k时成立推导n=k+1时成立,于是对一切n∈N*,n≥n_0,命题都成立,这种证明方法叫作数学归纳法。要注意由归纳假设到检验n=k+1的递推。运用数学归纳法证明命题要分为两步,第一步是递推的基础,第二步是递推的依据,这两步缺一不可。  相似文献   

17.
证明形如a1 a2 … an≥f(n)的不等式,通常是用数学归纳法,但若将f(n)看做是一个数列{bn}的前n项和,则可通过证明an≥bn进而证明a1 a2 … an≥b1 b2 … bn=f(n)成立.  相似文献   

18.
本文用构造法证明了六个不等式,希望对读者能有所参考. 1.构造二项式例1 当n∈N,n≥3时, 求证:2n-1/2n 1>n/n 1. (91年“三南”高考) 分析原不等式等价于: 当n∈N,n≥3时,证明不等式2n>2n 1,由二项式定理,知  相似文献   

19.
现将基本不等式a2 +b2 ≥ 2ab推广如下 :定理 若x、y、a、b均为正数 ,则有xax+y+ ybx+y ≥ (x+ y)axby,( )当且仅当a=b时等号成立 .证明 由加权不等式得xax+yx+ y+ ybx+yx+ y≥ (ax+y) xx+y· (bx+y) yx+y,即xax+y+ ybx+y ≥ (x+y)axby,当且仅当ax+y =bx+y,即a=b时等号成立 .( )式可变形为ax+yby ≥ x+ yx ax - yxbx,( )利用上述变形 ( )式 ,来证明某些分式不等式 ,能起到化繁为简 ,化难为易之功效 .现举例说明如下 :例 1  (《数学通报》问题 871)设n∈N ,α、β∈(0 ,π2 ) ,求证 :sinn+2 αcosnβ + cosn+2 αsinnβ ≥ 1.证明 由 …  相似文献   

20.
对于一类条件为a >1,b >1,c >1的分式不等式 ,可借助“拆项法”及平均值不等式 ,予以统一巧证 .拆项法 1 a =(a - 1) + 1.此时有a≥ 2 (a - 1)·1.例 1 设a >1,b >1,求证 :ab - 1+ ba - 1≥4 .证明  ab - 1+ ba - 1≥ 2 (a - 1)·1b - 1+ (b - 1)·1a - 1≥ 2·2 a - 1b - 1· b - 1a - 1=4 .意外收获 aa - 1+ bb - 1≥ 4 ;aa - 1+ bb - 1+ cc - 1≥ 6 ;ab - 1+ bc - 1+ ca - 1≥ 6 ;ac - 1+ ba - 1+ cb - 1≥ 6等 .细心推敲 ,还不难获得如下 :推论 1 若ai>1,i=1,2 ,3,… ,n ,n∈N ,则a1a2 - 1+ a2a3- 1+… + an- 1an- 1+ ana1- 1≥2n …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号