首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 134 毫秒
1.
High Intensity Interval Training (HIIT) can be performed with different effort to rest time-configurations, and this can largely influence training responses. The purpose of the study was to compare the acute physiological responses of two HIIT and one moderate intensity continuous training (MICT) protocol in young men. A randomised cross-over study with 10 men [age, 28.3?±?5.5years; weight, 77.3?±?9.3?kg; height, 1.8?±?0.1?m; peak oxygen consumption (VO2peak), 44?±?11?mL.kg?1.min?1]. Participants performed a cardiorespiratory test on a treadmill to assess VO2peak, velocity associated with VO2peak (vVO2peak), peak heart rate (HRpeak) and perceived exertion (RPE). Then participants performed three protocols equated by distance: Short HIIT (29 bouts of 30s at vVO2peak, interspersed by 30s of passive recovery, 29?min in total), Long HIIT (3 bouts of 4?min at 90% of vVO2peak, interspersed by 3?min of recovery at 60% of vVO2peak, 21?min in total) and MICT (21?min at 70% of vVO2peak). The protocols were performed in a randomised order with ≥48 h between them. VO2, HRpeak and RPE were compared. VO2peak in Long HIIT was significantly higher than Short HIIT and MICT (43?±?11 vs 32?±?8 and 37?±?8?mL.kg?1.min?1, respectively, P?P?P?2, HR and RPE than Short HIIT and MICT, suggesting a higher demand on the cardiorespiratory system. Short HIIT and MICT presented similar physiologic and perceptual responses, despite Short HIIT being performed at higher velocities.  相似文献   

2.
ABSTRACT

High-intensity interval training (HIIT) has been proposed as a time-efficient exercise protocol to improve metabolic health, but direct comparisons with higher-volume moderate-intensity continuous training (MICT) under unsupervised settings are limited. This study compared low-volume HIIT and higher-volume MICT interventions on cardiometabolic and psychological responses in overweight/obese middle-aged men. Twenty-four participants (age: 48.1±5.2yr; BMI: 25.8±2.3kg·m?2) were randomly assigned to undertake either HIIT (10 X 1-min bouts of running at 80–90% HRmax separated by 1-min active recovery) or MICT (50-min continuous jogging/brisk walking at 65–70% HRmax) for 3 sessions/week for 8 weeks (2-week supervised + 6-week unsupervised training). Both groups showed similar cardiovascular fitness (VO2max) improvement (HIIT: 32.5±5.6 to 36.0±6.2; MICT: 34.3±6.0 to 38.2±5.1mL kg?1 min?1, p < 0.05) and %fat loss (HIIT: 24.5±3.4 to 23.2±3.5%; MICT: 23.0±4.3 to 21.5±4.1%, p< 0.05) over the 8-week intervention. Compared to baseline, MICT significantly decreased weight and waist circumference. No significant group differences were observed for blood pressure and cardiometabolic blood markers such as lipid profiles, fasting glucose and glycated haemoglobin. Both groups showed similar enjoyment levels and high unsupervised adherence rates (>90%). Our findings suggest that low-volume HIIT can elicit a similar improvement of cardiovascular fitness as traditional higher-volume MICT in overweight/obese middle-aged men.  相似文献   

3.
Abstract

Exercise is recognized as a frontline therapy for the prevention and treatment of type 2 diabetes (T2D) but the optimal type of exercise is not yet determined. We compared the effects of high-intensity interval training (HIIT) with moderate-intensity continuous training (MICT) for improvement of continuous glucose monitoring (CGM)-derived markers of glycaemic variability, and biomarkers of endothelial cell damage (CD31+ and CD62+ endothelial microparticles (EMPs)) within a population at elevated risk of developing T2D. Fifteen inactive overweight or obese women were randomized to 2 weeks (10-sessions) of progressive HIIT (n?=?8, 4–10X 1-min @ 90% peak heart rate, 1-min rest periods) or MICT (n?=?7, 20–50?min of continuous activity at ~65% peak heart rate). Prior and three days post-training, fasting blood samples were collected. Both HIIT and MICT improved glycaemic variability as measured by CGM standard deviation (HIIT: 0.82?±?0.39 vs. 0.72?±?0.33?mmol/L; MICT: 0.82?±?0.19 vs. 0.62?±?0.16?mmol/L, pre vs. post) and mean amplitude of glycaemic excursions (MAGE; HIIT: 1.98?±?0.81 vs. 1.41?±?0.90; MICT; 1.98?±?0.43 vs. 1.65?±?0.48, pre vs. post) with no difference between groups. CD62+ EMPs were lower following HIIT (187.7?±?65 vs. 174.9?±?55, pre vs. post) and MICT (170?±?60 vs. 160.3?±?59, pre vs. post) with no difference between groups. There was no change in 24-h mean glucose or CD31+ EMPs. Two weeks of both HIIT or MICT similarly decreased glycaemic variability and CD62+ EMPs in overweight/obese women at elevated risk of T2D.  相似文献   

4.
This study aimed to describe the body composition and physiological changes which take place during the in-season and recovery periods of a group of natural bodybuilders. Natural male bodybuilders (n?=?9) were assessed 16 (PRE16), 8 (PRE8), and 1 (PRE1) week(s) before, and 4 (POST4) weeks after a bodybuilding competition. Assessments included body composition, resting metabolic rate (RMR), serum hormones, and 7-day weighed food and training diaries. Change in parameters was assessed using repeated-measures analysis of variance. Dietary protein intake remained high throughout the study period (2.8–3.1?g?kg?1?d?1). Fat mass (FM) was significantly reduced from PRE16 to PRE1 (8.8?±?3.1 vs. 5.3?±?2.4?kg, P?.01). There was a small decrease in lean mass (LM) from PRE8 to PRE1 (71.8?±?9.1 vs. 70.9?±?9.1?kg, P?P?>?.05). Large reductions in total and free testosterone (16.4?±?4.4 vs. 10.1?±?3.6?nmol?L?1, P?. 116.8?±?76.9?pmol?L?1, P?. 19.9?±?7.6?nmol?L?1, P?. 72.5?±?8.5?kg, P?. 25.4?±?9.3?nmol?L?1, P?相似文献   

5.
This study compared the effects of 12-week sprint interval training (SIT), high-intensity interval training (HIIT), and moderate-intensity continuous training (MICT) on cardiorespiratory fitness (V?O2peak), body mass and insulin sensitivity in overweight females. Forty-two overweight women (age 21.2 ± 1.4 years, BMI 26.3 ± 2.5 kg·m?2) were randomized to the groups of SIT (80 × 6-s sprints + 9-s rest), and isoenergetic (300KJ) HIIT (~9 × 4-min cycling at 90% V?O2peak + 3-min rest) and MICT (cycling at 60% V?O2peak for ~ 61-min). Training intervention was performed 3 d·week?1 for 12 weeks. After intervention, all three groups induced the same improvement in V?O2peak (~ +25%, p < 0.001) and a similar reduction in body mass (~ – 5%, p < 0.001). Insulin sensitivity and fasting insulin levels were improved significantly on post-training measures in SIT and HIIT by ~26% and ~39% (p < 0.01), respectively, but remain unchanged in MICT. In contrast, fasting glucose levels were only reduced with MICT (p < 0.01). The three training strategies are equally effective in improving V?O2peak and reducing body mass, however, the SIT is time-efficient. High-intensity training (i.e. SIT and HIIT) seems to be more beneficial than MICT in improving insulin sensitivity.

Abbreviations: BMI: body mass index; CVD: cardiovascular disease; HIEG: hyperinsulinaemic euglycaemic glucose; HIIT: high-intensity interval training; HOMA-IR: homeostasis model assessment of insulin resistance; HR: heart rate; MICT: moderate-intensity continuous training; RPE: ratings of perceived exertion; SIT: sprint interval training; T2D: type 2 diabetes; V?O2peak: peak oxygen consumption  相似文献   


6.
Physical inactivity is a major contributor to low-grade systemic inflammation. Most of the studies characterizing interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α) release from exercising legs have been done in young, healthy men, but studies on inactivity in older people are lacking. The impact of 14 days of one-leg immobilization (IM) on IL-6 and TNF-α release during exercise in comparison to the contralateral control (CON) leg was investigated. Fifteen healthy men (age 68.1?±?1.1?year (mean?±?SEM); BMI 27.0?±?0.4 kg·m2; VO2max 33.3?±?1.6 ml·kg?1·min?1) performed 45?min of two-leg dynamic knee extensor exercise at 19.5?±?0.9 W. Arterial and femoral venous blood samples from the CON and the IM legs were collected every 15?min during exercise, and thigh blood flow was measured with ultrasound Doppler. Arterial plasma IL-6 concentration increased with exercise (rest vs. 45?min, main effect p?p?p?=?.085, effect size 0.28) higher in the IM leg compared to the CON leg (288 (95% CI: 213–373) vs. 220 (95% CI: 152–299) pg·min?1, respectively). There was no release of TNF-α in either leg and arterial concentrations remained unchanged during exercise (p?>?.05). In conclusion, exercise induces more pronounced IL-6 secretion in healthy older men. Two weeks of unilateral immobilization on the other hand had only a minor influence on IL-6 release. Neither immobilization nor exercise had an effect on TNF-α release across the working legs in older men.  相似文献   

7.
The purpose of this study was to compare the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) utilizing a canoeing ergometer on endurance determinants, as well as aerobic and anaerobic performances among flat-water canoeists. Fourteen well-trained male flat-water canoeists were divided into an HIIT group or an MICT group. All subjects performed a continuous graded exercise test (GXT) and three fixed-distance (200, 500, and 1000?m) performance tests on a canoeing ergometer to determine canoeing economy, peak oxygen uptake (VO2peak), and power at VO2peak, and to calculate the critical velocity (CV) and anaerobic work capacity before and after the training programmes. The training programme involved training on a canoeing ergometer three times per week for four weeks. HIIT consisted of seven 2 min canoeing bouts at an intensity of 90% VO2peak separated by 1 min of rest. The MICT group was trained at an intensity of 65% VO2peak continuously for 20 min. After four weeks of training, performance in the 200-m distance test and the power at VO2peak significantly improved in the HIIT group; performance in the 500?m and 1000?m distances and CV significantly improved in the MICT group. However, all variables were not significantly different between groups. It is concluded that HIIT for four weeks is an effective training strategy for improvement of short-distance canoeing performance. In contrast, MICT improves middle-distance canoeing performances and aerobic capacity.  相似文献   

8.
This study (1) compared the physiological responses and performance during a high-intensity interval training (HIIT) session incorporating externally regulated (ER) and self-selected (SS) recovery periods and (2) examined the psychophysiological cues underpinning SS recovery durations. Following an incremental maximal exercise test to determine maximal aerobic speed (MAS), 14 recreationally active males completed 2 HIIT sessions on a non-motorised treadmill. Participants performed 12?×?30?s running intervals at a target intensity of 105% MAS interspersed with 30?s (ER) or SS recovery periods. During SS, participants were instructed to provide themselves with sufficient recovery to complete all 12 efforts at the required intensity. A semi-structured interview was undertaken following the completion of SS. Mean recovery duration was longer during SS (51?±?15?s) compared to ER (30?±?0?s; p?d?=?1.46?±?0.46). Between-interval heart rate recovery was higher (SS: 19?±?9?b?min?1; ER: 8?±?5?b?min?1; p?d?=?1.43?±?0.43) and absolute time ≥90% maximal heart rate (HRmax) was lower (SS: 335?±?193?s; ER: 433?±?147?s; p?=?.075; d?=?0.52?±?0.39) during SS compared to ER. Relative time ≥105% MAS was greater during SS (90?±?6%) compared to ER (74?±?20%; p?d?=?0.87?±?0.40). Different sources of afferent information underpinned decision-making during SS. The extended durations of recovery during SS resulted in a reduced time ≥90% HRmax but enhanced time ≥105% MAS, compared with ER exercise. Differences in the afferent cue utilisation of participants likely explain the large levels of inter-individual variability observed.  相似文献   

9.
Exercise has been demonstrated to have considerable effects upon haemostasis, with activation dependent upon the duration and intensity of the exercise bout. In addition, markers of coagulation and fibrinolysis have been shown to possess circadian rhythms, peaking within the morning (0600–1200?h). Therefore, the time of day in which exercise is performed may influence the activation of the coagulation and fibrinolytic systems. This study aimed to examine coagulation and fibrinolytic responses to short-duration high-intensity exercise when completed at different times of the day. Fifteen male cyclists (VO2max: 60.3?±?8.1?ml?kg?1?min?1) completed a 4-km cycling time trial (TT) on five separate occasions at 0830, 1130, 1430, 1730 and 2030. Venous blood samples were obtained pre- and immediately post-exercise, and analysed for tissue factor (TF), tissue factor pathway inhibitor (TFPI), thrombin–anti-thrombin complexes (TAT) and D-Dimer. Exercise significantly increased plasma concentrations of TF (p?p?p?p?p?=?.004) and TFPI (p?=?.031), with 0830 greater than 1730 (p .001), while 1730 was less than 2030?h (p?=?.008), respectively. There was no significant effect of time of day for TAT (p?=?.364) and D-Dimer (p?=?.228). Power output, TT time and heart rate were not significantly different between TTs (p?>?.05); however, percentage VO2max was greater at 1730 when compared to 2030 (p?=?.04). Due to a time-of-day effect present within TF, peaking at 0830, caution should be applied when prescribing short-duration high-intensity exercise bout within the morning in populations predisposed to hypercoagulability.  相似文献   

10.
The purpose of this study was to examine the effects of different amounts of whey protein in carbohydrate–electrolyte (CE) drinks on post-exercise rehydration. Ten males completed 5 trials in a randomised cross-over design. A 4-h recovery was applied after a 60-min run at 65% VO2peak in each trial. During recovery, the participants ingested a high-carbohydrate CE drink (CE-H), a low-carbohydrate CE drink (CE-L), a high-whey-protein (33?g·L?1) CE drink (CW-H), a medium-whey-protein (22?g·L?1) CE drink (CW-M) or a low-whey-protein (15?g·L?1) CE drink (CW-L) in a volume equivalent to 150% of their body mass (BM) loss. The drinks were provided in six equal boluses and consumed by the participants within 150?min in each trial. After exercise, a BM loss of 2.15%?±?0.05% was achieved. Urine production was less in the CW-M and CW-H trials during recovery, which induced a greater fluid retention in the CW-M (51.0%?±?5.7%) and CW-H (55.4%?±?3.8%) trials than in any other trial (p?p?p?p??1 in the current study.  相似文献   

11.
ABSTRACT

This study examined changes in enjoyment, affective valence, and rating of perceived exertion (RPE) in obese women performing two regimes of high intensity interval training (HIIT) differing in structure and volume. Nineteen obese and inactive women (age and body mass index?=?37.5?±?10.5?yr and 39.0?±?4.3?kg/m2) were randomized to 6?wk of traditional (TRAD, n?=?10) or periodized interval training (PER, n?=?9) which was performed on a cycle ergometer during which structure changed weekly. Two supervised sessions per week were performed in a lab, and one session per week was performed unsupervised. During every lab-based session, perceptual responses including enjoyment, affective valence, and RPE were acquired. Data showed a groupXtraining interaction for enjoyment (p?=?0.02) which was lower by 10–25 units during PER versus TRAD. In addition, there was a groupXtimeXtraining interaction for RPE (p?=?0.01). RPE did not change in response to TRAD yet varied during PER, with lower RPE values exhibited during brief supramaximal bouts (6.3?±?0.9) compared to longer intervals (7.3?±?1.2). Both regimes showed reductions in affective valence during training, with the lowest values equal to 1.5?±?1.6 in TRAD and ?0.2?±?1.6 in PER. Compared to TRAD, more aversive responses were shown in PER throughout training by 0.4–2.0 units. Data show lower enjoyment and more aversive responses to higher-volume bouts of interval training, which suggests that shorter bouts may be perceived more favourably by obese women.  相似文献   

12.
13.
Purpose: To determine if: (i) mean power output and enjoyment of high-intensity interval training (HIIT) are enhanced by virtual-reality (VR)-exergaming (track mode) compared to standard ergometry (blank mode), (ii) if mean power output of HIIT can be increased by allowing participants to race against their own performance (ghost mode) or by increasing the resistance (hard mode), without compromising exercise enjoyment.

Methods: Sixteen participants (8 males, 8 females, VO2max: 41.2?±?10.8 ml?1·kg?1·min?1) completed four VR-HIIT conditions in a partially-randomised cross-over study; (1a) blank, (1b) track, (2a) ghost, and (2b) hard. VR-HIIT sessions consisted of eight 60 s high-intensity intervals at a resistance equivalent to 70% (77% for hard) maximum power output (PMAX), interspersed by 60 s recovery intervals at 12.5% PMAX, at a self-selected cadence. Expired gases were collected and VO2 measured continuously. Post-exercise questionnaires were administered to identify differences in indices related to intrinsic motivation, subjective vitality, and future exercise intentions.

Results: Enjoyment was higher for track vs. blank (difference: 0.9; 95% CI: 0.6, 1.3) with no other differences between conditions. There was no difference in mean power output for track vs. blank, however it was higher for track vs. ghost (difference: 5 Watts; CI: 3, 7), and hard vs. ghost (difference: 19 Watts; 95% CI: 15, 23).

Conclusions: These findings demonstrate that VR-exergaming is an effective intervention to increase enjoyment during a single bout of HIIT in untrained individuals. The presence of a ghost may be an effective method to increase exercise intensity of VR-HIIT.  相似文献   

14.
The aim of the present study was to evaluate the effects of a 12-week home-based strength, explosive and plyometric (SEP) training on the cost of running (Cr) in well-trained ultra-marathoners and to assess the main mechanical parameters affecting changes in Cr. Twenty-five male runners (38.2?±?7.1 years; body mass index: 23.0?±?1.1?kg·m?2; V˙O2max: 55.4?±?4.0 mlO2·kg?1·min?1) were divided into an exercise (EG?=?13) and control group (CG?=?12). Before and after a 12-week SEP training, Cr, spring-mass model parameters at four speeds (8, 10, 12, 14?km·h?1) were calculated and maximal muscle power (MMP) of the lower limbs was measured. In EG, Cr decreased significantly (p?<?.05) at all tested running speeds (?6.4?±?6.5% at 8?km·h?1; ?3.5?±?5.3% at 10?km·h?1; ?4.0?±?5.5% at 12?km·h?1; ?3.2?±?4.5% at 14?km·h?1), contact time (tc) increased at 8, 10 and 12?km·h?1 by mean +4.4?±?0.1% and ta decreased by ?25.6?±?0.1% at 8?km·h?1 (p?<?.05). Further, inverse relationships between changes in Cr and MMP at 10 (p?=?.013; r?=??0.67) and 12?km·h?1 (p?<?.001; r?=??0.86) were shown. Conversely, no differences were detected in the CG in any of the studied parameters. Thus, 12-week SEP training programme lower the Cr in well-trained ultra-marathoners at submaximal speeds. Increased tc and an inverse relationship between changes in Cr and changes in MMP could be in part explain the decreased Cr. Thus, adding at least three sessions per week of SEP exercises in the normal endurance-training programme may decrease the Cr.  相似文献   

15.
Running downhill, in comparison to running on the flat, appears to involve an exaggerated stretch-shortening cycle (SSC) due to greater impact loads and higher vertical velocity on landing, whilst also incurring a lower metabolic cost. Therefore, downhill running could facilitate higher volumes of training at higher speeds whilst performing an exaggerated SSC, potentially inducing favourable adaptations in running mechanics and running economy (RE). This investigation assessed the efficacy of a supplementary 8-week programme of downhill running as a means of enhancing RE in well-trained distance runners. Nineteen athletes completed supplementary downhill (?5% gradient; n?=?10) or flat (n?=?9) run training twice a week for 8 weeks within their habitual training. Participants trained at a standardised intensity based on the velocity of lactate turnpoint (vLTP), with training volume increased incrementally between weeks. Changes in energy cost of running (EC) and vLTP were assessed on both flat and downhill gradients, in addition to maximal oxygen uptake (?O2max). No changes in EC were observed during flat running following downhill (1.22?±?0.09 vs 1.20?±?0.07?Kcal?kg?1?km?1, P?=?.41) or flat run training (1.21?±?0.13 vs 1.19?±?0.12?Kcal?kg?1?km?1). Moreover, no changes in EC during downhill running were observed in either condition (P?>?.23). vLTP increased following both downhill (16.5?±?0.7 vs 16.9?±?0.6?km?h?1 , P?=?.05) and flat run training (16.9?±?0.7 vs 17.2?±?1.0?km?h?1, P?=?.05), though no differences in responses were observed between groups (P?=?.53). Therefore, a short programme of supplementary downhill run training does not appear to enhance RE in already well-trained individuals.  相似文献   

16.
Scientific information about the effects of caffeine intake on combat sport performance is scarce and controversial. The aim of this study was to investigate the effectiveness of caffeine to improve Brazilian Jiu-jitsu (BJJ)-specific muscular performance. Fourteen male and elite BJJ athletes (29.2?±?3.3?years; 71.3?±?9.1?kg) participated in a randomized double-blind, placebo-controlled and crossover experiment. In two different sessions, BJJ athletes ingested 3?mg?kg?1 of caffeine or a placebo. After 60?min, they performed a handgrip maximal force test, a countermovement jump, a maximal static lift test and bench-press tests consisting of one-repetition maximum, power-load, and repetitions to failure. In comparison to the placebo, the ingestion of the caffeine increased: hand grip force in both hands (50.9?±?2.9 vs. 53.3?±?3.1?kg; respectively p?p?=?.02), and time recorded in the maximal static lift test (54.4?±?13.4 vs. 59.2?±?11.9?s; p?p?=?.02), maximal power obtained during the power-load test (750.5?±?154.7 vs. 826.9?±?163.7?W; p?p?=?.04). In conclusion, the pre-exercise ingestion of 3?mg?kg?1 of caffeine increased dynamic and isometric muscular force, power, and endurance strength in elite BJJ athletes. Thus, caffeine might be an effective ergogenic aid to improve physical performance in BJJ.  相似文献   

17.
Objective: To examine the relationship between regular game-related caffeine consumption on sleep after an evening Super Rugby game. Methods: Twenty elite rugby union players wore a wrist-activity monitor to measure sleep for three days before, three days after and on the night of an evening Super Rugby game (19:00–21:00). Players ingested caffeine as they would normally (i.e. before and sometimes during a game) and saliva samples were collected before (17:00) and after (21:30) the game for caffeine concentration. Results: Compared to the nights leading up to the game, on the night of the game, players went to bed 3?h later (23:08?±?66?min vs 02:11?±?114?min; p?p?p?p?p?p?=?.06) on game night. Conclusion: Caffeine consumption before a Super Rugby game markedly increases post-game saliva caffeine levels. This may contribute to the observed 3.5?h delay in time at sleep onset and the 1.5?h reduction in sleep duration on the night of the game. This study highlights the need for a strategic approach to the use of caffeine within a Super Rugby team considering the potential effect on post-game sleep.  相似文献   

18.
Parkour is a modern physical activity that consists of using the environment, mostly urban, as a playground of obstacles. The aims of this study were (i) to investigate age, anthropometric and training characteristics of Parkour practitioners, called ‘traceurs’ and (ii) to assess jump performances and muscular characteristics of traceurs, compared to those of gymnasts and power athletes. The mean age of the population of traceurs studied (n?=?130) was 19.4?±?4.3 years, women represented 12.4% of the total field and mean training volume was 8.1?±?0.5?hours/week. Vertical and long jump performances were analysed on smaller samples of participants (four groups, n?=?15 per group); and eccentric (?90°?s?1, ?30°?s?1), concentric (30°?s?1, 90°?s?1) and isometric knee extensors torques were evaluated by means of an isokinetic dynamometer. Traceurs showed greater (P?P?P?P?相似文献   

19.
The aim of the present study was to compare the effect of an increasing-distance, interval-training programme and a decreasing-distance, interval-training programme, matched for total distance, on aerobic and anaerobic physiological indices. Forty physical education students were randomly assigned to either the increasing- or decreasing-distance, interval-training group (ITG and DTG), and completed two similar relevant sets of tests before and after six weeks of training. One training programme consisted of increasing-distance interval-training (100–200–300–400–500?m) and the other decreasing-distance interval training (500–400–300–200–100?m). While both training programmes led to a significant improvement in VO2 max (ES?=?0.83–1.25), the improvement in the DTG was significantly greater than in the ITG (14.5?±?3.6 vs. 7.8?±?3.2%, p?<?.05). In addition, while both training programmes led to a significant improvement in all anaerobic indices (ES?=?0.83–1.63), the improvements in peak power (15.7?±?7.8 vs. 8.9?±?4.7), mean power (10.6?±?5.4 vs. 6.8?±?4.4), and fatigue index (18.2?±?10.9 vs. 7.0?±?14.2) were significantly greater in the DTG compared to the ITG (p?<?.05). The main finding of the present study was that beyond the significant positive effects of both training programmes on aerobic and anaerobic fitness, the DTG showed significant superiority over the ITG in improving aerobic and anaerobic performance capabilities. Coaches and athletes should therefore be aware that, in spite of identical total work, an interval-training programme might induce different physiological impacts if the order of intervals is not identical.  相似文献   

20.
BackgroundIt remains unclear whether studies comparing maximal oxygen uptake (VO2max) response to sprint interval training (SIT) vs. moderate-intensity continuous training (MICT) are associated with a high risk of bias and poor reporting quality. The purpose of this study was to evaluate the risk of bias and quality of reporting in studies comparing changes in VO2max between SIT and MICT.MethodsWe conducted a comprehensive literature search of 4 major databases: AMED, CINAHL, EMBASE, and MEDLINE. Studies were excluded if participants were not healthy adult humans or if training protocols were unsupervised, lasted less than 2 weeks, or utilized mixed exercise modalities. We used the Cochrane Collaboration tool and the CONSORT checklist for non-pharmacological trials to evaluate the risk of bias and reporting quality, respectively.ResultsTwenty-eight studies with 30 comparisons (3 studies included 2 SIT groups) were included in our meta-analysis (n = 360 SIT participants: body mass index (BMI) = 25.9 ± 3.7 kg/m2, baseline VO2max = 37.9 ± 8.0 mL/kg/min; n = 359 MICT participants: BMI = 25.5 ± 3.8 kg/m2, baseline VO2max = 38.3 ± 8.0 mL/kg/min; all mean ± SD). All studies had an unclear risk of bias and poor reporting quality.ConclusionAlthough we observed a lack of superiority between SIT and MICT for improving VO2max (weighted Hedge's g = ?0.004, 95% confidence interval (95%CI): ?0.08 to 0.07), the overall unclear risk of bias calls the validity of this conclusion into question. Future studies using robust study designs are needed to interrogate the possibility that SIT and MICT result in similar changes in VO2max.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号