首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
This study investigates the leader-following consensus issue of multi-agent systems subject to simultaneous connectivity-mixed attacks, actuator/sensor faults and disturbances. Connectivity-mixed attacks are remodeled into connectivity-maintained and connectivity-paralyzed topologies in a switched version, and actuator/sensor faults are established with unified incipient-type and abrupt-type characteristics. Then, unknown input observer-based decoupling and estimation are incorporated to achieve unknown state and fault observations with the normalized technique, and the leader-following consensus-based compensation to faults, resilience to attacks and robustness to disturbances are also realized with the neighboring output information and sensor fault estimation through the distributed framework. Criteria of achieving exponential leader-following consensus of multi-agent systems under cyber-physical threats are derived with dual attack frequency and activation rate indicators. Simulation example is conducted to exemplify the validation and merits of the proposed leader-following consensus algorithm.  相似文献   

2.
This paper studies the cooperative fault-tolerant formation control problem of tracking a dynamic leader for heterogeneous multiagent systems consisting of multipile unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) with actuator faults under switching directed interaction topologies. Based on local neighborhood formation information, the distributed fault-tolerant formation controllers are constructed to ensure that all follower UAVs and UGVs can accomplish the demanding formation configuration in the state space and track the dynamic leader’s trajectory. By incorporating the sliding mode control and adaptive control technique, the actuator faults and unknown parameters of follower agents can be compensated. Through the theoretical analysis, it is proved that the cooperatively semiglobally uniformly ultimately boundedness of the closed-loop system is guaranteed, and the formation tracking errors converge to a small adjustable neighborhood of the origin. A simulation example is introduced to show the validity of the proposed distributed fault-tolerant formation control algorithm.  相似文献   

3.
This paper investigates the finite-time cooperative formation control problem for a heterogeneous system consisting of an unmanned ground vehicle (UGV) - the leader and an unmanned aerial vehicle (UAV) - the follower. The UAV system under consideration is subject to modeling uncertainties, external disturbance as well as actuator faults simultaneously, which is associated with aerodynamic and gyroscopic effects, payload mass, and other external forces. First, a backstepping controller is developed to stabilize the leader system to track the desired trajectory. Second, a robust nonsingular fast terminal sliding mode surface is designed for UAV and finite-time position control is achieved using terminal sliding mode technique, which ensures the formation error converges to zero in finite time in the presence of actuator faults and other uncertainties. Furthermore, by combining the radial basis function neural networks (NNs) with adaptive virtual parameter technology, a novel NN-based adaptive nonsingular fast terminal sliding formation controller (NN-ANFTSMFC) is developed. By means of the proposed adaptive control strategy, both uncertainties and actuator faults can be compensated without the prior knowledges of the uncertainty bounds and fault information. By using the proposed control schemes, larger actuator faults can be tolerated while eliminating control chattering. In order to realize fast coordinated formation, the expected position trajectory of UAV is composed of the leader position information and the desired relative distance with UGV, based on local distributed theory, in the three-dimensional space. The tracking and formation controllers are proved to be stable by the Lyapunov theory and the simulation results demonstrate the effectiveness of proposed algorithms.  相似文献   

4.
In this paper, for multiple Euler–Lagrange systems embodying external disturbances and unknown uncertainties, the problems of collision-avoiding formation (CAF) are investigated. With regard to Euler–Lagrange systems under healthy actuator condition and under actuator failures, two distributed collision-avoiding formation (DCAF) control laws are proposed. In one case, which the systems are under healthy actuator condition, firstly, a robust continuous term with adaptive variable gain is utilized to reduce the influence of external disturbances under unknown range. In addition, in order to handle the uncertainties of dynamical systems and collision avoidance, both the estimations for uncertain terms and repulsive potential functions are established in design of algorithms. For the other case, the systems under actuator failures, by utilizing the Lyapunov function and relevant adaptive updating laws, the effects subjected to partial loss of actuator effectiveness can be eliminated. Eventually, two distributed algorithms are proposed to achieve the expected formation configuration with no collision occurred. Numerical simulations are conducted to illustrate the validities of the presented control methodologies.  相似文献   

5.
This paper studies the time-varying output formation tracking problems for heterogeneous linear multi-agent systems with multiple leaders in the presence of switching directed topologies, where the agents can have different system dynamics and state dimensions. The outputs of followers are required to accomplish a given time-varying formation configuration and track the convex combination of leaders’ outputs simultaneously. Firstly, using the neighboring relative information, a distributed observer is constructed for each follower to estimate the convex combination of multiple leaders’ states under the influences of switching directed topologies. The convergence of the observer is proved based on the piecewise Lyapunov theory and the threshold for the average dwell time of the switching topologies is derived. Then, an output formation tracking protocol based on the distributed observer and an algorithm to determine the control parameters of the protocol are presented. Considering the features of heterogeneous dynamics, the time-varying formation tracking feasible constraints are provided, and a compensation input is applied to expand the feasible formation set. Sufficient conditions for the heterogeneous multi-agent systems with multiple leaders and switching directed topologies to achieve the desired time-varying output formation tracking under the designed protocol are proposed. Finally, simulation examples are given to validate the theoretical results.  相似文献   

6.
Actuator faults often occur in physical systems, which seriously affect the transient performance and control accuracy of the system. For the finite-time consensus tracking problem of multiple Lagrangian systems with actuator faults and preset error constraints, a novel distributed fault-tolerant controller is proposed in this paper. The proposed controller is developed based on the barrier Lyapunov function method and the adding a power integrator technique, which can not only guarantee the steady-state performance of the system but also its transient performance. Due to its strong sensitivity to the variation of system errors, the proposed controller can quickly eliminate the system initial errors and the error perturbations caused by actuator faults. That is, the controller can guarantee that the consensus error converges to zero in a finite time and is always constrained within the preset error bound. Finally, the effectiveness of the developed controller is verified by simulation of a multi-manipulator system.  相似文献   

7.
This study investigates the distributed fault-tolerant output regulation for heterogeneous linear multi-agent systems in the presence of actuator faults. For the systems which are not the neighbors of exosystem, the distributed fixed-time observer is put forward to observe the state of exosystem. Note that it is dependent on the global information of network topology. To address this issue, the fully distributed adaptive fixed-time observer is further proposed. It can estimate not only the state of exosystem, but also the system matrix of exosystem. Based on the proposed observer, a novel fault-tolerant controller is developed to compensate for actuator faults. Moreover, it is proven that the proposed controller is effective to address the fault-tolerant output regulation problem by the Lyapunov stability theory. Finally, two illustrative examples are given to illustrate the feasibility of the main theoretical findings.  相似文献   

8.
9.
In this paper, we consider the consensus problem of a class of heterogeneous multi-agent systems composed of the linear first-order and second-order integrator agents together with the nonlinear Euler–Lagrange (EL) agents. First, we propose a distributed consensus protocol under the assumption that the parameters of heterogeneous system are exactly known. Sufficient conditions for consensus are presented and the consensus protocol accounting for actuator saturation is developed. Then, by combining adaptive controller and PD controller together, we design a protocol for the heterogeneous system with unknown parameters (in the nonlinear EL dynamics). Based on graph theory, Lyapunov theory and Barbalat's Lemma, the stability of the controllers is proved. Simulation results are also provided to illustrate the effectiveness of the obtained results.  相似文献   

10.
In this paper, the consensus problem of multi-agent systems with general linear dynamics is studied. Motivated by the MIMO communication technique, a general framework is considered in which different state variables are exchanged in different independent interaction topologies. This novel framework could improve the control system design flexibility and potentially improve the system performance. Fully distributed consensus control laws are proposed and analyzed for the settings of fixed and switching multiple topologies. The control law can be applied using only local information. And the control gain can be designed depending on the dynamics of the individual agent. By transforming the overall multi-agent systems into cascade systems, necessary and sufficient conditions are provided to guarantee the consensus of the overall systems under fixed and switching state variable dependent topologies, respectively. Two simulation examples are provided to illustrate the effectiveness of the proposed theoretical results.  相似文献   

11.
This paper investigates the controller design problem of cyber-physical systems (CPSs) to ensure the reliability and security when actuator faults in physical layers and attacks in cyber layers occur simultaneously. The actuator faults are time-varying, which cover bias fault, outage, loss of effectiveness and stuck. Besides that, some state-dependent cyber attacks are launched in control input commands and system measurement data channels, which may lead state information to the opposite direction. A novel co-design controller scheme is constructed by adopting a new Lyapunov function, Nussbaum-type function, and direct adaptive technique, which may further relax the requirements of actuator/sensor attacks information. It is proven that the states of the closed-loop system asymptotically converge to zero even if actuator faults, actuator attacks and sensor attack are time-varying and co-existing. Finally, simulation results are presented to show the effectiveness of the proposed control method.  相似文献   

12.
In this paper, a novel tracking control scheme for continuous-time nonlinear affine systems with actuator faults is proposed by using a policy iteration (PI) based adaptive control algorithm. According to the controlled system and desired reference trajectory, a novel augmented tracking system is constructed and the tracking control problem is converted to the stabilizing issue of the corresponding error dynamic system. PI algorithm, generally used in optimal control and intelligence technique fields, is an important reinforcement learning method to solve the performance function by critic neural network (NN) approximation, which satisfies the Lyapunov equation. For the augmented tracking error system with actuator faults, an online PI based fault-tolerant control law is proposed, where a new tuning law of the adaptive parameter is designed to tolerate four common kinds of actuator faults. The stability of the tracking error dynamic with actuator faults is guaranteed by using Lyapunov theory, and the tracking errors satisfy uniformly bounded as the adaptive parameters get converged. Finally, the designed fault-tolerant feedback control algorithm for nonlinear tracking system with actuator faults is applied in two cases to track the desired reference trajectory, and the simulation results demonstrate the effectiveness and applicability of the proposed method.  相似文献   

13.
The present paper proposes two new schemes of sensor fault estimation for a class of nonlinear systems and investigates their performances by applying these to satellite control systems. Both of the schemes essentially transform the original system into two subsystems (subsystems 1 and 2), where subsystem-1 includes the effects of system uncertainties, but is free from sensor faults and subsystem-2 has sensor faults but without any uncertainties. Sensor faults in subsystem-2 are treated as actuator faults by using integral observer based approach. The effects of system uncertainties in subsystem-1 can be completely eliminated by a sliding mode observer (SMO). In the first scheme, the sensor faults present in subsystem-2 are estimated with arbitrary accuracy using a SMO. In the second scheme, the sensor faults are estimated by designing an adaptive observer (AO). The sufficient condition of stability of the proposed schemes has been derived and expressed as a linear matrix inequality (LMI) optimization problem and the design parameters of the observers are determined by using LMI techniques. The effectiveness of the schemes in estimating sensor faults is illustrated by considering an example of a satellite control system. The results of the simulation demonstrate that the proposed schemes can successfully estimate sensor faults even in the presence of system uncertainties.  相似文献   

14.
In this paper, we consider the consensus problem of multiple agents modeled by Euler–Lagrange (EL) equation, among which two classes of agents are addressed, i.e., some agents with exactly known parameters and the others with parametric uncertainties. We propose a distributed consensus protocol for the heterogeneous EL systems in which both time-delay and jointly connected topologies are taken into consideration. Based on graph theory, Lyapunov theory and Barbalat?s lemma, the stability of the controller is proved. A distinctive feature of this work is to investigate the consensus problem of EL systems with heterogeneous dynamics, time-delay and jointly connected topologies in a unified theoretical framework. Simulation results are also provided to illustrate the effectiveness of the obtained results.  相似文献   

15.
16.
This paper studies the event-based consensus problem of second-order multi-agent systems with actuator saturation under fixed topology and Markovian switching topologies. By a model transformation, the consensus problem is first converted into the stability problem of the error system. Using discontinuous Lyapunov functional approach, two sufficient conditions on the consensus are derived for second-order multi-agent systems with fixed topology and Markovian switching topologies, respectively. The discontinuous Lyapunov functions take full account of the characteristics of the sawtooth delay, and thus lead to a less conservative consensus criterion. It is shown that the consensus condition depends on the parameters of sampling period, Laplacian matrix, and event-triggered parameter. In addition, this paper provides an effective method to co-design both the consensus controller and the event-triggered parameter. Finally, two numerical examples are provided to illustrate the effectiveness and feasibility of the proposed algorithm.  相似文献   

17.
This paper researches the consensus issue for multi-agent systems on matrix-weighted directed fixed and undirected switching network topologies by sampled data control method which saves resources and is more practical. Using the sampled information, the distributed control laws are designed under two network topologies, respectively. Under directed fixed network topology, the consensus conditions based on the sampling period and the eigenvalues of Laplacian matrix are deduced by matrix theory and analysis theory. Under undirected switching network topology, by using Lyapunov stability theory, the consensus conditions based on the sampling period and switched network topologies are built. Lastly, two simulation examples are offered to verify the validity of the obtained results.  相似文献   

18.
In this paper, the problem of adaptive fuzzy fault-tolerant control is investigated for a class of switched uncertain pure-feedback nonlinear systems under arbitrary switching. The considered actuator failures are modeled as both lock-in-place and loss of effectiveness. By utilizing mean value theorem, the considered pure-feedback systems are transformed into a class of switched nonlinear strict-feedback systems. Under the framework of backstepping design technique and common Lyapunov function (CLF), an adaptive fuzzy fault-tolerant control (FTC) method with predefined performance bounds is developed. It is proved that under the proposed controller, all the signals of the close-loop systems are bounded and the state tracking error for each step remains within the prescribed performance bound (PPB) regardless of actuator faults and the system switchings. In addition, the tracking errors and magnitudes of control inputs can be reduced by adjusting the PPB parameters of errors in the first and last steps. The simulation results are provided to show the effectiveness of the proposed control scheme.  相似文献   

19.
In this paper, the leader-following consensus problem is investigated by event-triggered control for multi-agent systems subject to time-varying actuator faults. Firstly, for a case of the leader without control input, a distributed event-triggered fault-tolerant protocol is proposed with the help of adaptive gains. Secondly, the proposed protocol is developed by an auxiliary nonlinear function to compensate the effect of the leader’s unknown bounded input. It is shown that under the both obtained protocols the tracking errors converge to an adjustable neighborhood around the origin, meanwhile the Zeno behavior is avoided. Moreover, the protocols are fully distributed in sense that any global information associated with the network is no longer utilized. Finally, numerical examples are presented to show the validity of the obtained protocols.  相似文献   

20.
In this paper, fixed-time consensus tracking problems under directed interaction topologies for second-order non-linear multi-agent systems with disturbance and second-order multi-agent systems with input delay are investigated. Two continuous integral terminal sliding modes are designed, which can effectively eliminate the singularity and chattering. Correspondingly, two fixed-time distributed control protocols are proposed based on the designed continuous ITSM to ensure that the consensus tracking are achieved in fixed-time. It is shown that the upper bounds of settling time are regardless of initial conditions. The rigorous proofs are given by employing Lyapunov stability theory and fixed-time stability theory. Simulations are provided to verify the effectiveness of the theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号