首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合,简称"三线合一".它包括三个方面的内容:如图1,△ABC中,AB=AC,D是BC上的一点.(1)若∠1=∠2,那么AD⊥BC,BD=CD;(2)若AD⊥BC,那么BD=CD,∠1=∠2;(3)若BD=CD,那么∠1=∠2,AD⊥BC.一、"三线合一"反映了等腰三角形的重要性质一轴对称性  相似文献   

2.
<正>等腰三角形具有"三线合一"的性质:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.如图1,在△ABC中,AB=AC,D是BC上一点.(1)如果∠1=∠2,那么AD⊥BC,BD=CD;(2)如果BD=CD,那么∠1=∠2,AD⊥BC;(3)如果AD⊥BC,那么∠1=∠2,BD=CD.上述性质中,共存在4个关系式:AB=AC,∠1=∠2,AD⊥BC,BD=CD.而改写后的每条性质都有两个条件,且都有一个条件是"AB=AC".反过来,在关系式∠1=∠2,AD⊥BC,  相似文献   

3.
等腰三角形的顶角平分线、底边上的中线。底边上的高互相重合.等腰三角形的这一性质称“三线合一”定理.这个定理可分解为三个定理:(1)在△ABC中,AB=AC.若AD是角平分线,则AD⊥BC且BD=DC;(2)在△ABC中,AB=AC.若AD是中线,则AD⊥BC且/DAB=/DAC;(3)在△ABC中,AB=AC.若AD是高,则BD=DC且/DAB=/DAC.由此可知,‘“三线合一”定理有三个基本功能:回.证明线段相等;2.证明两角相等;3.证明两条线段(或直线)互相垂直.下面举例说明“三线合一”定理在证题中的应用.侈IJI女日图1,在thA…  相似文献   

4.
等腰三角形底边上的中线、底边上的高和顶角的平分线这三条线重合,我们把这称为“三线合一”.利用“三线合一”证明有关等腰三角形的题目,常能事半功倍. 例1 已知:如图1,在△ABC中,AB=AC,∠BAC=20°,在AB上取AD=BC,连结CD.求∠ACD的度数. 分析:容易证明,∠ABC=∠ACB=12(  相似文献   

5.
同学们知道,等腰三角形底边上中线、高线及顶角的角平分线是互相重合的,我们把等腰三角形的这一性质简称为“三线合一”。一、利用“三线合一”的性质寻找证题途径例1已知:如图1,在△ABC中,AB=AC,BD是AC边上的高。求证:∠CBD=21∠A图1分析:当题目中有等腰三角形的已知条件时,常常作出底边上的中线、高线或者顶角的角平分线中的一条,利用等腰三角形“三线合一”的性质寻找证题途径。证明:作AE⊥BC于E,则∠1 ∠C=90°∵BD是AC边上的高图2∴∠CBD ∠C=90°∴∠1=∠CBD又∵AB=ACAE⊥BC∴∠1=12∠BAC∴∠CBD=21∠BAC变式练习…  相似文献   

6.
“梯形”练习题中有这样一个问题:已知等腰梯形ABCD,AD//BC,对角AC⊥BD,AD=3cm,BC=7cm,求梯形的面积S.参考书中通常介绍如下三种作辅助线的方法(如图1).然而不作辅助线,是否也能求解呢?答案是肯定的.解法如下:如图2,因为ABCD是等腰梯形,所以AB=DC,∠ABC=∠DCB,又知BC=BC,所以△ABC≌△DCB(SAS),所以∠1=∠2,AC=BD,而AC⊥BD,所以∠1=∠2=45°,故△BOC等腰直角三角形.同理可知△AOD也为等腰直角三角形.由勾股定理得OA=OD=姨22AD=23姨2cm.OB=OC=姨22BC=7姨22cm.所以AC=OA OC=5姨2cm.于是S梯形ABCD=S△ABC S…  相似文献   

7.
初二几何教材在“等腰三角形的判定”一节的开始 ,提出下面两道题 :其一是第 75页例 1,求证 :如果三角形一个外角的平分线平行于三角形的一边 ,那么这个三个形是等腰三角形。这就是 ,已知 :如图 ,∠ CAE是△ ABC的外角 ,∠ 1=∠ 2 ,AD∥ BC,求证 :AB=AC。  其二是第 76页练习题第 3题 ,已知 :如图 ,AD∥BC,BD平分∠ ABC。求证 :AB=AD。  这两道题提供了一种新的思路 :由平行线和角平分线的条件来推出一个三角形是等腰三角形。事实上 ,这个思路在解题中往往很有用处。例 1.已知 :如图 ,DC∥AB,AD∥ BC,∠ 1=∠ 2 ,∠ 3=∠ …  相似文献   

8.
<正>“三线合一”是指在等腰三角形中底边上的高、中线和顶角的平分线重合,用数学符号可以归纳为:在△ABC中,AB=AC,D是BC上的一点,满足下面三个条件中的一个,另外两个条件也成立:(1)AD⊥BD;(2)∠BAD=∠CAD;(3)BD=CD.由此可知等腰三角形的“三线合一”是一个“万能”的性质定理,当同学们解答等腰三角形问题时能够用其证明线段相等、两角相等、两线互相垂直等.一、利用“三线合一”性质解答三角形问题的注意事项因为“三线合一”是等腰三角形的重要性质,所以其使用前提是在等腰三角形中,如果是其他三角形不能使用“三线合一”性质.如果几何问题中没有明确给出三角形是等腰三角形,可以添加辅助线构造等腰三角形,然后再使用“三线合一”性质.  相似文献   

9.
在证明题中,常会出现二倍角问题,此类问题往往有一定难度,需要认真分析已知与结论之间的联系,添加适当的辅助线,从而化难为易.现举例说明. 一、作倍角的平分线例1 已知:如图1,在△ABC中,∠B=2∠A,AB=2BC.求证:△ABC是直角三角形. 证明:作∠ABC的平分线BD交AC于点D,取AB的中点E,连结DE. ∵∠ABC=2∠A,∠ABC=2∠1=2∠2,∴∠A=∠1=∠2.即△ABD为等腰三角形.∵E为AB边中点,∴DE⊥AB.∵BE=12AB=BC,∠1=∠2,BD=BD,∴△BDE≌△BDC.∴∠BCD=∠BED=90°.即△ABC为直角三角形.二、构造倍角的等角…  相似文献   

10.
1 命题若 AD为 Rt△ ABC的斜边 BC上的高 ,则 1AD2 =1AB2 1AC2 .图 1证明 如图1 ,因 AB⊥ AC,AD⊥ BC,故 AB· AC= AD· BC,于是  1AD2 =BC2AB2 · AC2 =AB2 AC2AB2 · AC2 =1AB2 1AC2 .2 应用例 1 在 Rt△ ABC中 ,∠A=90°,以CB,CA,AB为轴将△ ABC旋转一周所得几何体的体积分别记为 Va,Vb,Vc,试证明 :1V2a= 1V2b 1V2c.证明 如图 1 ,有Vb=13πAB2·AC,Vc=13πAC2 · AB,Va=13πAD2·BD 13πAD2·DC  =13πAD2 · BC=13πAD· AB·AC.故  1V2b 1V2c=1( 13πAB· AC) 2( 1AB2 1…  相似文献   

11.
1 一个假命题命题:任一个三角形是等腰三角形.已知:△ABC(如图1).求证:△ABC 为等腰三角形.证明:如图2,作 AB 的中垂线 MD 交∠ACB 的平分线于 D 点,分别作 DE⊥BC,垂足为 E,DF⊥AC,垂足为 F,连结 BD、AD,则易知:DE=DF,BD=AD.  相似文献   

12.
如图一,在△ABC中,AD为∠BAC的平分线,则AD~2 BD·DC=AB·AC. 这就是平面几何中著名的斯库顿定理.它的证法简便. 证明:延长∠BAC的平分线AD交⊙ABC于E,连结BE.∴∠E=∠C,∠BAE=∠DAC,∵△ABE∽△ADCAB/AE=AD/AC,∴AD(AD DE)=AB·AC.即AD~2 AD·DE=AB·AC,由相交弦定理得AD·DE=BD·DC,∴AD~2 BD·DC=AB·AC.  相似文献   

13.
一、将四边形问题转化为平行四边形问题例 1.已知 :四边形 ABCD中 ,AB=DC,AC=BD,且 AD≠BC。求证 :四边形 ABCD是等腰梯形。分析 :欲证此四边形为等腰梯形 ,可由定义来证明。从已知条件可看出 ,只要证明AD∥ BC即可。由此联想到构造平行四边形即可证得。证明 :过点 D作 DE∥ A B交BC于点 E,则∠ ABC=∠ DEC。∵ AB=DC,AC=DB,BC=CB,∴△ ABC≌△ DCB。∴∠ ABC=∠ DCB,∠ DEC=∠ DCB。∴ AB=DC=DE,∵ AB∥ DE,∴四边形 ABED是平行四边形 ,∴ AD∥ BC。又∵ AD≠ BC,∴四边形 ABCD是等腰梯形。二、将四…  相似文献   

14.
利用三角形全等可证明线段相等,以及证明与线段相等有关的线段和、差、倍、分等问题;还可证明两角相等,以及证明与两角相等有关的线段平行、线段垂直等问题.例1如图,∠BAC=90°,AB=AC,F是BC上一点,BD⊥AF于D,E为AF延长线上一点,CE⊥AE,求证:DE=AE-CE.证明:∵CE⊥AE,BD⊥AF于D,∴∠AEC=∠BDA=90°.∴∠1=90°-∠3=∠2.在△AEC和△BDA中,∵∠1=∠2,∠AEC=∠BDA,AC=AB,∴△AEC≌△BDA.∴CE=AD.∵DE=AE-AD,∴DE=AE-CE.例2如图,在△ABC中,D是AB的中点,DE∥BC交AC于E,F是BC上的点,BF=DE,求证:DF∥AC.证…  相似文献   

15.
在1993年西宁市中考数学试卷中,有这样一道题:已知在如图Rt△ABC中,∠BAC=90°,AD⊥BC,AE平分∠BAC。若AB=15cm,BD=9cm。求:(1)BC的长;(2)AC的长;(3)  相似文献   

16.
有关三角形的角度计算是三角形一章中重要问题之一,解决这类问题的方法虽因题而异,但利用列方程求解不失为一种好方法。现举几例加以说明. 例1 已知:如图1,在△ABC中,AB=AC,点D在AC上且BD=BC=AD,求△ABC各角的度数. 解设∠A=x°,∵AD=BD, ∴∠ABD=∠A=x°,∵∠BDC=∠ABD+∠A,∴∠BDC=2x°, ∵AB=AC,BD=BC,∴∠BDC=∠C=∠ABC=2x°. ∵∠A+∠ABC+∠ACB=180°, 即x+2x+2x=180°,∴x=36°∴△ABC中,∠A=36°,∠ABC=∠C=72°, 例2 已知:如图2,在△ABC中,AB=BD=AC,AD=CD,求△ABC各角的度数.解:设∠B=x°,∵AB=AC,AD=CD,∴∠C=∠DAC=∠B=x°,∴∠ADB=∠C+∠DAC=2x°,∵AB=BD,∴∠BAD=∠ADB=2x°,  相似文献   

17.
与角平分线有关的几何问题在各类考试(竞赛和中考)中屡见不鲜,解决这类问题时,若能通过巧添辅助线构造全等三角形常可使问题化难为易.例1如图,在△ABC中,∠BAC的平分线交BC于D,AC=AB BD,∠C=30°,则∠ABC的度数是(江苏省初中数学竞赛题)()A.45°B.60°C.75°D.90°解:延长AB到E,使AE=AC,连接DE,∵∠1=∠2,AD=AD,∴△AED≌△ACD(SAS).∴∠E=∠C=30°.又AE=AB BE,AC=AB BD,∴BE=BD.从而∠3=∠E.∴∠ABC=2∠E=60°.故选:B.反思:若在AC上截取AF=AB,同学们考虑怎样证明?例2如图,已知在△ABC中,AB>AC,AD为∠A的…  相似文献   

18.
题在等腰三角形ABC中,AB=1,∠A =90°,点E为腰AC的中点,点F在底边BC上,且EF⊥BE.求△CEF的面积.  相似文献   

19.
例1已知:四边形ABCD中,对角线AC与BD交于点O,AC=BD,M、N分别是AB、CD的中点,MN交BD、AC分别于点E、F求证:OE=OF.分析:如图1,要证OE=OF,只要证∠OEF=∠OFE,即可.取AD中点G,连接MG、NG,则有MG∥BD,NG∥AC,从而有∠OEF=∠GMN,∠OFE=∠GNM,又MG=12BD,NG=21AC,而AC=BD,故有MG=NG,从而有∠GMN=∠GNM,故可得∠OEF=∠OFE.例2如图2,△ABC中,∠ACB=2∠B,AD⊥BC于点D,M是BC的中点,求证:MD=21AC.分析:取AB中点N,连出△ABC的中位线MN,则有MN=21AC,所以只要证MD=MN即可,连接ND,则ND=21AB=BN,从而…  相似文献   

20.
在几何解题中时常需要辅助线.在含有三角形中线条件的习题中倍长中线是一种重要的添加技巧,它可以将许多较为分散的条件相对集中,从而架设已知与未知的桥梁.现就倍长中线的方法举几例说明.例1如图1,△ABC中,BD=DC,若AD⊥AC,∠BAD=30°.求证:AC=12AB.简析虽然AC、AB在同一个三角形中,但无法证得结论.想到BD=DC,即AD是中线,可倍长中线,即延长AD至E,使DE=AD,再连结BE,则易证得△BDE≌△CDA.于是∠E=∠CAD,BE=AC.而AD⊥AC,则∠E=90°.在Rt△AEB中,∠BAD=ABEDC图1CADEB图230°,所以BE=12AB,故AC=12AB.例2如图2,…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号