首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The observer-based feedback control for the two-level bilinear open stochastic quantum system is proposed in this paper. The state of open stochastic quantum system (OSQS) is described in the Cartesian coordinate system. The proposed state observer is designed by using state-dependent differential Riccati equation (SDDRE) and constructed for optimally estimating the state of OSQS from measurement output of the system. The state of observer is continuously updated by the output data of continuous weak measurement (CWM). A Lyapunov Feedback control is designed based on estimated state of the observer for the state transfer of OSQS. An exponential Lyapunov function is chosen to ensure the stability of the system. The observer-based Lyapunov feedback control (OLFC) strategy is developed according to the stochastic Lyapunov stability theorem. The numerical simulation results verify the achievability of the proposed OLFC strategy in terms of state estimation and state transfer of OSQS. Numerical simulations demonstrate that the observer tracks the state of system asymptotically with minimum error of ± 3%. The proposed OLFC has the ability to move the state of OSQS from arbitrary initial state to the final target eigenstate with high fidelity ≥ 90%.  相似文献   

2.
《Journal of The Franklin Institute》2022,359(18):10355-10391
In this paper, an adaptive neural finite-time tracking control is studied for a category of stochastic nonlinearly parameterized systems with multiple unknown control directions, time-varying input delay, and time-varying state delay. To this end, a novel criterion of semi-globally finite-time stability in probability (SGFSP) is proposed, in the sense of Lyapunov, for stochastic nonlinear systems with multiple unknown control directions. Secondly, a novel auxiliary system with finite-time convergence is presented to cope with the time-varying input delay, the appropriate Lyapunov Krasovskii functionals are utilized to compensate for the time-varying state delay, Nussbaum functions are exploited to identify multiple unknown control directions, and the neural networks (NNs) are applied to approximate the unknown functions of nonlinear parameters. Thirdly, the fraction dynamic surface control (FDSC) technique is embedded in the process of designing the controller, which not only the “explosion of complexity” problems are successfully avoided in traditional backstepping methods but also the command filter convergence can be obtained within a finite time to lead greatly improved for the response speed of command filter. Meanwhile, the error compensation mechanism is established to eliminate the errors of the command filter. Then, based on the proposed novel criterion, all closed-loop signals of the considered systems are SGPFS under the designed controller, and the tracking error can drive to a small neighborhood of the origin in a finite time. In the end, three simulation examples are applied to demonstrate the validity of the control method.  相似文献   

3.
In this paper, we consider the problem of mixed H and passivity control for a class of stochastic nonlinear systems with aperiodic sampling. The system states are unavailable and the measurement is corrupted by noise. We introduce an impulsive observer-based controller, which makes the closed-loop system a stochastic hybrid system that consists of a stochastic nonlinear system and a stochastic impulsive differential system. A time-varying Lyapunov function approach is presented to determine the asymptotic stability of the corresponding closed-loop system in mean-square sense, and simultaneously guarantee a prescribed mixed H and passivity performance. Further, by using matrix transformation techniques, we show that the desired controller parameters can be obtained by solving a convex optimization problem involving linear matrix inequalities (LMIs). Finally, the effectiveness and applicability of the proposed method in practical systems are demonstrated by the simulation studies of a Chua’s circuit and a single-link flexible joint robot.  相似文献   

4.
《Journal of The Franklin Institute》2023,360(13):10365-10385
This paper investigates a spatiotemporal sampled-data fuzzy control strategy for switched singularly perturbed partial differential equation (PDE) systems, where the systems’ operation modes obey average dwell-time switching mechanism. To efficiently deal with nonlinear terms and guarantee the system stability for the considered systems, a spatiotemporal sampled-data fuzzy control scheme is developed. Furthermore, based on the fact that mode mismatch phenomena during switching and sampling, through formulating novel Lyapunov functionals (LFs) with the discontinuous terms and mode-dependent two-sided looped-functionals, which can fully utilize the state information of the sampling period, a new exponential stability criterion is provided for the target systems. Finally, an example is provided to prove the validity of the proposed control approach.  相似文献   

5.
This paper deals with the problem of stabilization via synchronous state-feedback control for two-dimensional (2-D) discrete-time Roesser systems with stochastic parameters involving switchings and multiplicative stochastic noises. The switching process is driven by an inhomogeneous Markov chain whose transition probability matrix is piecewise time-invariant and external disturbances are of the type of white noises, which get multiplied into both system state and input vectors. Stability and tractable controller design conditions are derived based on a 2-D mode-dependent Lyapunov function approach, which are validated by a numerical example with simulations.  相似文献   

6.
Using the interval type-2 Takagi–Sugeno (IT-2 T-S) fuzzy control method, this paper formulates a class of non-autonomous interconnected dynamical system (IDS) with discontinuities. Under the differential inclusion (DI) framework, the fixed-time stabilization (FXTS) problem is studied via indefinite derivative Lyapunov approach, where the time-derivative of constructed Lyapunov function doesn’t have to be negative/semi-negative. By designing novel IT-2 T-S fuzzy switching control protocol possessing time-varying control gain coefficients, several sufficient stabilization conditions are obtained to determine the system’s stability in fixed time. Furthermore, the settling time (ST) of FXTS is estimated. Due to the time-varying property of control gain coefficients and indefiniteness of system’s parameters, the advantage of the IT-2 T-S fuzzy switching control protocol designed in this paper is that its control gain coefficients are not only more flexible, but also can affect the estimation of ST. Finally, the designed control protocols and FXTS results are confirmed by numerical example.  相似文献   

7.
A Lyapunov-based rapid control scheme is proposed to drive a Markovian open quantum system to a decoherence-free subspace by constructing the control Hamiltonians of the system. Based on Lyapunov theory, we design a general form of control laws, which includes the standard Lyapunov control law. The convergence of the control system to the decoherence-free subspace is strictly proved. By analyzing the relationship between the LaSalle invariant set and the decoherence-free subspace, we propose a construction method for the control Hamiltonians to further speed up the control process. Simulation experiments on a three-level quantum system demonstrate that the rapid Lyapunov control scheme proposed in this paper has a good control performance.  相似文献   

8.
This paper presents a fixed-time composite neural learning control scheme for nonlinear strict-feedback systems subject to unknown dynamics and state constraints. To address the problem of state constraints, a new unified universal barrier Lyapunov function is proposed to convert the constrained system into an unconstrained one. Taking the unconstrained system, a modified fixed-time convergence state predictor is explored, enabling the prediction error for compensating the neural adaptive law to be obtained and improving the learning ability of online neural networks (NNs). Without employing fractional power terms or a complicated switching strategy to build the control law, a new method of constructing a smooth fixed-time dynamic surface control scheme is proposed. This overcomes the potential singularity problem and the explosion of complexity often encountered in fixed-time back-stepping designs. The representative features of our design are threefold. First, it is free of the fractional power terms, yet offers fixed-time convergence. Second, it addresses the state constraint problem without requiring a feasibility check. Third, it constructs a new state-predictor and enhances the approximation accuracy of NNs. The stability of the proposed control scheme is analyzed using the Lyapunov technique. Simulation results are presented to illustrate the effectiveness of the proposed controller.  相似文献   

9.
This paper aims to solve the problem of sliding mode control for an uncertain two-dimensional (2-D) systems with states having time-varying delays. The uncertainties in the system dynamics are constituted of mismatched uncertain parameters and the unknown nonlinear bounded function. The proposed problem utilizes the model transformation approach. By segregating the proper Lyapunov–Krasovskii functional in concert with the improved version of Wirtinger-based summation inequality, sufficient solvability conditions for the existence of linear switching surfaces have been put forward, which ensure the asymptotical stability of the reduced-order equivalent sliding mode dynamics. Then, we solve the controller synthesis problem by extending the recently proposed reaching law to 2-D systems, whose proportional part is appropriately scaled by the factor that does not depend on some constant terms but rather on current switching surface’s value, which in turn ensures the faster convergence and better robustness against uncertainties. Finally, the proposed results have been validated through an implementation to a suitable physical system.  相似文献   

10.
This paper studies the time-varying output formation tracking problems for heterogeneous linear multi-agent systems with multiple leaders in the presence of switching directed topologies, where the agents can have different system dynamics and state dimensions. The outputs of followers are required to accomplish a given time-varying formation configuration and track the convex combination of leaders’ outputs simultaneously. Firstly, using the neighboring relative information, a distributed observer is constructed for each follower to estimate the convex combination of multiple leaders’ states under the influences of switching directed topologies. The convergence of the observer is proved based on the piecewise Lyapunov theory and the threshold for the average dwell time of the switching topologies is derived. Then, an output formation tracking protocol based on the distributed observer and an algorithm to determine the control parameters of the protocol are presented. Considering the features of heterogeneous dynamics, the time-varying formation tracking feasible constraints are provided, and a compensation input is applied to expand the feasible formation set. Sufficient conditions for the heterogeneous multi-agent systems with multiple leaders and switching directed topologies to achieve the desired time-varying output formation tracking under the designed protocol are proposed. Finally, simulation examples are given to validate the theoretical results.  相似文献   

11.
The tracking problem of high-order nonlinear multi-agent systems (MAS) with uncertainty is solved by designing adaptive sliding mode control. During the tracking process, node failures are possible to occur, a new agent replaces the failed one. Firstly, a distributed nonsingular terminal sliding mode(NTSM) control scheme is designed for the tracking agents. A novel continuous function is designed in the NTSM to eliminate the singularity and meanwhile guarantee the estimation of finite convergence time. Secondly, the unknown uncertainties in the tracking agents are compensated by proposing an adaptive mechanism in the NTSM. The adaptive mechanism adjusts the control input through estimating the derivative bound of the unknown uncertainties dynamically. Thirdly, the tracking problem with node failures and agent replacements is further investigated. Based on the constructed impulsive-dependent Lyapunov function, it is proved that the overall system will track the target in finite time even with increase of jump errors. Finally, comparison simulations are conducted to illustrate the effectiveness of proposed adaptive nonsingular terminal sliding mode control method for tracking systems suffering node failures.  相似文献   

12.
This paper studies the event-triggered control for discrete-time switched systems under the influence of denial-of-service (DoS) attacks and output quantization. Firstly, the switching is assumed to be slow enough in the sense of average dwell time, and DoS attacks are assumed to be energy-limited by constraining DoS frequency and DoS duration. Secondly, by designing an event-triggered mechanism which integrates switching, DoS attacks and transmission error, the initial state bound is obtained at a finite time. Then, a novel quantization coding method is designed by introducing a monotonically increasing sequence, which guarantees the unsaturation of the quantizer. On the basis of this, the exponential convergence and Lyapounov stability of the closed-loop system are established. Finally, two-tanks system is illustrated to demonstrate the effectiveness of the theoretical analysis.  相似文献   

13.
This paper is concerned with the problem of simultaneous fault detection and control of switched systems under the asynchronous switching. A switching law and fault detection/control units called fault detector/controllers are designed to guarantee the fault sensitivity and robustness of the closed-loop systems. Different from the existing results, a state reset strategy is introduced in the process of fault detection/control, which reduces the conservatism caused by the jump of multiple Lyapunov functions at switching instants. Further, the proposed strategy is only dependent the state of fault detector/controllers, which is available when the system state is invalid. Finally, by using a performance gain transform technique, non-convex fault sensitivity conditions are converted into the convex error attenuation ones. This further improves the fault detection effect. A numerical example is given to demonstrate the effectiveness of the proposed results.  相似文献   

14.
We consider the leader–follower consensus problem for a multi-agent system where information is exchanged only on a non-uniform discrete stochastic time domain. For a second-order multi-agent system subject to intermittent information exchange, we model the tracking error dynamics as a μ?varying linear system on a discrete stochastic time scale, where μ is the graininess operator. Based on a Lyapunov operator and a positive perturbation operator on the space of symmetric matrices, we derive necessary and sufficient conditions to design a decentralized consensus protocol. This protocol allows us to cast the mean-square exponential consensus problem within the framework of dynamic equations on stochastic time scales. We establish some theoretical results which allow for the computation of the control gain matrix which guarantees the mean-square exponential stability with a given decay rate for the error dynamics. To show the effectiveness of the theoretical results, some simulation and experimental results on multi-robot systems have been performed.  相似文献   

15.
Robustness to unmatched parametric uncertainty is prime requirement of roll control algorithm, especially when it is modelled in discrete time domain and implemented through on-board processor. Sliding mode control is a well established nonlinear control technique, which ensures a robust performance in presence of matched uncertainties and disturbances. In case of the discrete version of sliding mode control, due to finite operational sampling frequency, the system trajectories cannot be forced to slide on the switching manifold. The trajectories remain confined to certain domain around the sliding surface and this is known as Quasi Sliding Mode (QSM) motion. The bound of QSM decides the accuracy and performance of the discrete version of sliding mode. By design, the discrete-time sliding modes are robust to the matched bounded perturbations, however, unmatched perturbations directly affect the boundary layer width and hence the performance of the system. In the present paper, discrete time Lyapunov inequality based sliding hyperplane is designed, which enables robustness to unmatched perturbations arising due to uncertain system matrix A. Further, the requirement of full state-vector for the design of control and sliding surface is met through the multi-rate output feedback (MROF). This control strategy is then demonstrated with application to roll position control of missile with a bandwidth limited actuator.  相似文献   

16.
A leader-following synchronous control is proposed in multiple electrohydraulic actuators (MEHAs) under distributed switching topologies to guarantee the follower electrohydraulic actuators (EHAs) tracking the leader motion. Each EHA has a 3-orders nonlinear dynamics with lumped uncertainties involving uncertain hydraulic parameters and unknown external load. Then a quasi-synchronization controller together with a high-gain disturbance observer is designed by Lyapunov techniques to guarantee the synchronous errors asymptotically convergence to a zero neighborhood. Finally, the effectiveness of the proposed quasi-synchronous controller is verified by both simulation and experimental bench such that the finite EHA nodes achieve leader-following synchronous motion under distributed switching topologies.  相似文献   

17.
研究了开放量子系统的状态转移问题.利用刘维尔超算符将其矩阵动力学模型转换为向量形式.给定一个耗散的量子系统的动力学模型,在一个随时变化的外部控制场中,以系统状态和目标状态的密度矩阵的误差平方作为性能指标,推导出改进的状态转移最优控制律.在数值仿真实验中,我们研究了一个热浴中的自旋1/2粒子系统在单个外部控制场作用下的动力学特性.在所提出的最优控制作用下,分别选择本征态、纯态和混合态作为系统的初始状态和目标状态.对此系统中状态转移的实验结果进行了性能对比分析.  相似文献   

18.
This paper studies the finite-time localization and multicircular circumnavigation problem of an unknown stationary target via a networked multi-agent system using bearing-only measurements. To enhance the convergence rate of estimation, a novel estimator is developed to enable the agent to localize the target in finite time. At the same time, with the estimated target position, a distributed controller is designed such that the agents circumnavigate the target along different orbits with any prescribed angular spacing in finite time. In terms of Lyapunov theory and cascade control strategy, finite-time stability of the overall system including the estimator and controller are analyzed rigorously. Besides, the proposed algorithms guarantee that the agents can keep a safe distance from the target in the whole movement process, and high angular velocity can be avoided even if the circumnavigation radius becomes small. Finally, to corroborate the theoretical results, two simulation examples are given.  相似文献   

19.
This paper considers the passivity-based control problem for stochastic jumping systems with mode-dependent round-trip time-varying delays and norm-bounded parametric uncertainties. By utilizing a novel Markovian switching Lyapunov functional, a delay-dependent passivity condition is obtained. Then, based on the derived passivity condition, a desired Markovian switching dynamic output feedback controller is designed, which ensures the resulting closed-loop system is passive. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed results.  相似文献   

20.
This paper investigates the localization and circumnavigation problem of a stationary target by multiple agents with multi-orbit within finite time. The agents can only obtain their own positions and the bearing information of the target. They are required to travel along their prescribed trajectories in three-dimensional (3-D) space and circumnavigate the target. First, a novel finite-time distributed positional estimator, using bearing-only measurements, is developed for agents to localize the target. Afterward, with the estimate of the target position, a distributed control law is designed to steer the agents to circumnavigate the target on different orbits with any preconcerted angular spacing distribution pattern within finite time. Simultaneously, the corresponding stability and convergence analyses are presented. Finally, simulation results are provided to demonstrate the effectiveness of the theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号