首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
This paper proposes a novel Hermite neural network-based second-order sliding-mode (HNN-SOSM) control strategy for the synchronous reluctance motor (SynRM) drive system. The proposed HNN-SOSM control strategy is a nonlinear vector control strategy consisting of the speed control loop and the current control loop. The speed control loop adopts a composite speed controller, which is composed of three components: 1) a standard super-twisting algorithm-based SOSM (STA-SOSM) controller for achieving the rotor angular speed tracking control, 2) a HNN-based disturbance estimator (HNN-DE) for compensating the lumped disturbance, which is composed of external disturbances and parametric uncertainties, and 3) an error compensator for compensating the approximation error of the HNN-DE. The learning laws for the HNN-DE and the error compensator are derived by the Lyapunov synthesis approach. In the current control loop, considering the magnetic saturation effect, two composite current controllers, each of which comprises two standard STA-SOSM controllers, are designed to make direct and quadrature axes stator current components in the rotor reference frame track their references, respectively. Comparative hardware-in-the-loop (HIL) tests between the proposed HNN-SOSM control strategy and the conventional STA-SOSM control strategy for the SynRM drive system are performed. The results of the HIL tests validate the feasibility and the superiority of the proposed HNN-SOSM control strategy.  相似文献   

2.
This paper studies the problem of continuous gain-scheduled PI tracking control on a class of stochastic nonlinear systems subject to partially known jump probabilities and time-varying delays. First, gradient linearization procedure is used to construct model-based linear stochastic systems in the vicinity of selected operating states. Next, based on stochastic Lyapunov stabilization analysis, sufficient conditions for the existence of a PI tracking control are established for each linear model in terms of linear matrix inequalities. Finally, continuous gain-scheduled approach is employed to design continuous nonlinear PI tracking controllers on the entire nonlinear jump system. Simulation example is given to illustrate the effectiveness of the developed design techniques.  相似文献   

3.
Using a nonlinear complete order model of a synchronous motor, a robust second order sliding mode observer based control scheme is proposed. For that, a generalized super-twisting 3rd order observer is proposed for nonlinear systems. Based on the proposed observer scheme, a robust rotor flux observer is designed, then, a stator current observer is proposed using a classical super-twisting algorithm for extracting information of the rotor speed by means of the equivalent control method. The control design for the output tracking of a desired reference signal for the rotor speed is carried out with a classical super-twisting sliding mode algorithm and adaptive backstepping techniques. Due to the number of inputs, the flux in the excitation winding, and the direct component of the stator currents are also regulated. Numeric simulations predict a good performance of the closed-loop synchronous motor with parameter variations.  相似文献   

4.
The sudden development of short-circuit currents, and of recovery voltages at interruption of currents, depends on the effects of stator and rotor leakages as well as of saturation in the generating synchronous machines.The non-linear problem of the interaction of these features with the performance of the main windings and auxiliary damper circuits is solved analytically.This leads to a simple graphical representation which is numerically determined by the well-known magnetic and electric characteristics of machine and network and by two time constants of very different magnitudes which are derived from the ordinary data of the machines. Hence the variation with time, of short-circuit currents and of recovery voltages, can easily and rigorously be computed for every given example.The deviations of actual damper circuits from the ideal form and the effects of eddy currents in solid steel parts of the rotor are discussed so far that numerical results can be derived readily.A new transient test for synchronous machines is suggested by which rotor and stator leakage voltages can be measured separately, avoiding the uncertainties of the usual steady state leakage tests.  相似文献   

5.
永磁同步电机速度环的滑模变结构控制   总被引:1,自引:0,他引:1  
高敏 《科技广场》2007,(3):43-45
在永磁同步电机解耦数学模型的基础上,本文提出了一种把滑模变结构原理用于永磁同步电机的矢量控制系统的方法。首先详细阐述了滑模变结构的基本原理,然后采用速度环的滑模变结构来取代传统的PI控制,并对两个系统进行了仿真分析,仿真结果证明采用速度环的滑模变结构控制系统确有其优越性。  相似文献   

6.
We investigate the input–output decoupling problem of switched Boolean control networks (SBCNs) in this paper. Based on the matrix expression of Boolean functions, the dynamics of SBCNs are converted into an algebraic form via semi-tensor product of matrices first. Then, using the redundant variable separation technique, we give the necessary and sufficient conditions for the existence of three kinds of controllers to detect whether an SBCN can be input–output decomposed or not, respectively, including the open-loop controllers, the state feedback controllers, and the output feedback controllers. Meanwhile, a constructive procedure is presented to construct the open-loop controllers, as well as the state feedback controllers and output feedback controllers. Finally, an illustrative example is given to show that the new results obtained are effective.  相似文献   

7.
This note is concerned with global stabilization of linear systems subject to input saturation and time delays. Based on the Luenberger canonical form, two new decoupling methods are proposed. For the decoupled system, according to some special canonical forms, we propose two control laws for systems with input time-delays and systems with input saturation and time-delays, and give explicit conditions to ensure the global stability of the closed-loop system. Two special canonical forms contain time delays in input and state vectors, which is essential in recursive design. In addition, for the system subject to input saturation and time-delay, we introduce some free parameters when designing the controller, which can improve the instantaneous performance of the closed-loop system. Finally, the proposed approach is applied on the multi-agent system to design global stabilizing controllers and the effectiveness of the proposed controllers are illustrated by numerical simulations.  相似文献   

8.
Power-system stability improvement by a static synchronous series compensator (SSSC)-based damping controller is thoroughly investigated in this paper. Both local and remote signals with associated time delays are considered in the present study. The design problem of the proposed controller is formulated as an optimization problem, and differential evolution (DE) algorithm is employed to search for the optimal controller parameters. The performances of the proposed controllers are evaluated under different disturbances for both single-machine infinite-bus power system and multi-machine power system. The performance of the proposed controllers with variations in the signal transmission delays has also been investigated. Simulation results are presented and compared with a recently published modern heuristic optimization technique under various disturbances to show the effectiveness and robustness of the proposed approach. The performances of the proposed controllers are also evaluated under N−2 contingency situation.  相似文献   

9.
In this paper a tuning procedure is proposed for event based PI controllers with Regular Quantization with Hysteresis (RQH) sampling law. The RQH is a generalization of Symmetric Send on Delta (SSOD) strategy which decreases the robustness requirements to avoid limit cycle oscillations and reduce the number of events needed for control, improving the overall performance of PI controllers in networked control systems. The tuning procedure takes into account not only classical robustness margins but also takes advantage of some specific robustness measures to avoid limit cycle oscillations induced by the sampler. As the robustness analysis depends on the Describing Function (DF) method, a study evaluating the effect of high order harmonics is provided, showing the validity of the tuning procedure. Some examples are included in which the usefulness of the tuning procedure is shown.  相似文献   

10.
In this paper, the networked stabilization of discrete-time periodic piecewise linear systems under transmission package dropouts is investigated. The transmission package dropouts result in the loss of control input and the asynchronous switching between the subsystems and the associated controllers. Before studying the networked control, the sufficient conditions of exponential stability and stabilization of discrete-time periodic piecewise linear systems are proposed via the constructed dwell-time dependent Lyapunov function with time-varying Lyapunov matrix at first. Then to tackle the bounded time-varying packet dropouts issue of switching signal in the networked control, a continuous unified time-varying Lyapunov function is employed for both the synchronous and asynchronous subintervals of subsystems, the corresponding stabilization conditions are developed. The state-feedback stabilizing controller can be directly designed by solving linear matrix inequalities (LMIs) instead of iterative optimization used in continuous-time periodic piecewise linear systems. The effectiveness of the obtained theoretical results is illustrated by numerical examples.  相似文献   

11.
In this paper, a command filtered fault-tolerant control (CFFTC) approach is investigated for induction motors (IMs) discrete-time system in the presence of actuator faults and unknown load disturbances. Firstly, the IMs system discrete-time model is obtained by Euler method. Then, the fuzzy logic systems (FLSs) is utilized to compensate for unknown actuator faults. Besides, introducing the error compensation mechanism into discrete-time systems via command filters, “complexity of computation” and noncausal problem can be conquered, and the filtering error is avoided concurrently. Finally, simulation results demonstrate the validity of the presented fault-tolerant method for IMs system.  相似文献   

12.
This paper provides a new fast design method for robust industrial controllers via majorant systems in the frequency domain. The proposed methodology allows to establish several fast design techniques for a broad class of industrial controllers of plants with internal and/or external delays, parametric and/or structural uncertainties, and subject to disturbances, when an analytical model of the plant or data acquired from simple experimental tests are available. The provided design and control techniques are more general with respect to the Ziegler-Nichols ones and their numerous variants, which, in some cases, do not guarantee the control system stability.The used key idea consists in increasing the frequency response of the process to be controlled with the frequency response of a simpler system, also of order greater than one, with external delay, which allows designing, using simple formulas, controllers of PI, PID, PIDR, PI2, PI2D, PI2DR, PI2D2, and PI2D2R types. The designed controllers always guarantee stability margins larger than those of appropriate reference systems. Therefore, good performance of robustness of the stability and tracking precision of smooth references, with respect to parametric and/or structural uncertainties and/or smooth disturbances, are always guaranteed.The stated general methodology and various performance comparisons, also about the tracking precision of references with bounded first or second derivative, are illustrated and validated in several case studies, experimentally too.  相似文献   

13.
This paper is concerned with the resilient dynamic output-feedback (DOF) distributed model predictive control (DMPC) problem for discrete-time polytopic uncertain systems under synchronous Round-Robin (RR) scheduling. In order to alleviate the computation burden and improve the system robustness against uncertainties, the global system is decomposed into several subsystems, where each subsystem under synchronous RR scheduling communicates with each other via a network. The RR scheduling is adopted to avoid data collisions, however the updating information at each time instant is unfortunately reduced, and the underlying RR scheduling of subsystems are deeply coupled. The main purpose of this paper is to design a set of resilient DOF-based DMPC controllers for systems under the consideration of polytopic uncertainties and synchronous RR scheduling, such that the desirable performance can be obtained at a low cost of computational time. A novel distributed performance index dependent of the synchronous RR scheduling is constructed, where the last iteration information from the neighbor subsystems is used to deal with various couplings. Then, by resorting to the distributed RR-dependent Lyapunov-like approach and inequality analysis technique, a certain upper bound of the objective is put forward to establish a solvable auxiliary optimization problem (AOP). Moreover, by using the Jacobi iteration algorithm to solve such a problem online, the distributed feedback gains are directly obtained to guarantee the convergence of system states. Finally, two examples including a distillation process example and a numerical example are employed to show the effectiveness of the proposed resilient DMPC strategy.  相似文献   

14.
The synchronous control of a class of disturbed chaotic Lurie systems is probed in. The conception of Lr-synchronization of drive-respond systems is presented. Via Lyapunov function analysis and comparison principle, Lr synchronous controller of the drive-respond systems under perturbation is given and its robustness is also discussed. Barbalat lemma is further used to derive the adaptively synchronous controller for the unknown disturbance situation and the globally asymptotical synchronization is realized. All designed controllers are verified by the simulations and the given controllers are linear, which are convenient and can produce rapid convergence speed of the error systems.  相似文献   

15.
The interconnected large-scale power systems are liable to performance degradation under the presence of sudden small load demands, parameter ambiguity and structural changes. Due to this, to supply reliable electric power with good quality, robust and intelligent control strategies are extremely requisite in automatic generation control (AGC) of power systems. Hence, this paper presents an output scaling factor (SF) based fuzzy classical controller to enrich AGC conduct of two-area electrical power systems. An implementation of imperialist competitive algorithm (ICA) is made to optimize the output SF of fuzzy proportional integral (FPI) controller employing integral of squared error criterion. Initially the study is conducted on a well accepted two-area non-reheat thermal system with and without considering the appropriate generation rate constraint (GRC). The advantage of the proposed controller is illustrated by comparing the results with fuzzy controller and bacterial foraging optimization algorithm (BFOA)/genetic algorithm (GA)/particle swarm optimization (PSO)/hybrid BFOA-PSO algorithm/firefly algorithm (FA)/hybrid FA-pattern search (hFA-PS) optimized PI/PID controller prevalent in the literature. The proposed approach is further extended to a newly emerged two-area reheat thermal-PV system. The superiority of the method is depicted by contrasting the results of GA/FA tuned PI controller. The proposed control approach is also implemented on a multi-unit multi-source hydrothermal power system and its advantage is established by Correlating its results with GA/hFA-PS tuned PI, hFA-PS/grey wolf optimization (GWO) tuned PID and BFOA tuned FPI controllers. Finally, a sensitivity analysis is performed to demonstrate the robustness of the proposed method to broad changes in the system parameters and size and/or location of step load perturbation.  相似文献   

16.
Finite time convergence based on robust synergetic control (SC) theory and terminal attractor techniques is investigated. To this end a fast terminal synergetic control law (FTSC) is applied to drive a DC–DC Buck converter via simulation and through a dSpace based experimental setup to validate the approach. As robust as sliding mode control, the synergetic approach used is chattering free and provides rapid convergence. Efficacy of the proposed fast terminal synergetic controller is tested for step load change and output voltage variation and results compared to classical synergetic and PI control. Experimental validation using dSpace DS1104 confirms the results obtained in simulation showing the soundness of this approach compared to synergetic and PI controllers.  相似文献   

17.
The requirement for An electrical grid-connected wind turbine is that the synchronous generator speed is stable within a required speed range for the electrical grid. In this paper, a hydraulic wind turbine (HWT) system is considered, and the working principle and working conditions of the HWT are introduced. A novel speed control method is proposed in this paper, using both a proportional flow control valve and a variable displacement motor, which are adjusted in combination to control the speed of the HWT. By establishing a state space model of the HWT and solving the nonlinear system with a feedback linearization method, a bivariate tracking controller is constructed to realize accurate speed control under fluctuating wind speed and the load disturbance conditions. The effectiveness of the control method is verified by simulation, but experimental results highlight problems with the method. The theoretical controller is simplified to reduce sensitivity to measurement noise and modeling error. The control effect has been improved to some extent, but it is limited. Based on these results, combined with the sliding mode variable structure control method and the feedback linearization method to solve the problem of measurement noise and modeling error, and the effectiveness of the control law is finally verified experimentally. It lays a theoretical foundation for the practical application of HWT.  相似文献   

18.
This paper is aimed to investigate the operating characteristics of a static synchronous compensator (STATCOM) integrated with superconducting magnetic energy storage (SMES) for high power applications in the transmission network level. The STATCOM controller topology comprises multi-level multi-pulse neutral-point clamped-type (NPC) voltage source inverters (VSIs) using the harmonics cancellation technique, and incorporates a SMES coil. An innovative two-quadrant multi-level dc-dc converter is proposed to effectively interface the STATCOM with the superconducting coil using a buck-boost topology with neutral point voltage control capabilities; thus enabling to simultaneously control both active and reactive power exchange with the high voltage power system. A detailed analysis of major system variables is presented, including analytical results and digital simulations using the MATLAB/Simulink environment. Moreover, a three-level control scheme is designed, including a full decoupled current control strategy in the d-q reference frame with a novel controller to prevent the STATCOM dc bus capacitors voltage drift/imbalance and an enhanced power system frequency controller.  相似文献   

19.
预测函数控制在球磨机磨矿回路中的应用   总被引:2,自引:0,他引:2  
球磨机磨矿回路具有多变量强耦合、大延迟和非线性等特性,生产工况变化性大.常规采用多回路PID解耦控制.使回路之间的相互耦合作用减到最小,但这种控制不能及时且精确地控制磨矿过程.模型预测控制能够解决多变量系统之间的耦合作用,而预测函数控制是在模型预测控制原理的基础上提出的,并且将控制规律进行了结构化设计,使控制器在线计算量小,参数调整简单,跟踪快速,具有很强的抗扰动性和鲁棒性.本文以实验型球磨机磨矿回路为研究对象,分别设计多回路PID解耦控制和预测函数控制,并对两种控制的仿真效果进行对比.仿真结果表明,该控制策略具有较好的跟踪性能、抗干扰能力,可以达到较为理想的控制效果.  相似文献   

20.
A discrete-time adaptive fuzzy control method is introduced to achieve the speed regulation for induction motors (IMs) with input saturation via command filtering in this paper. First, the continuous model of IMs drive system is transformed into discrete-time form by using Euler formula. Then, the fuzzy logic systems are used to approximate the unknown nonlinear functions in the discrete-time drive system. In addition, the command filtering control method is introduced to overcome the “explosion of complexity” problem in the design process of traditional backstepping method. It is verified that all the closed-loop signals are bounded and the outputs can track the given reference signals well. Finally, simulation results illustrate the validity of the discrete-time control method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号