首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the input-to-state stability (ISS) of switched nonlinear input delay systems under asynchronous switching. Our results apply to cases where some subsystems of the switched systems are not necessarily stable under the influence of input delay. By making a compromise among the matched-stable period, the matched-unstable period, and the unmatched period and allowing the increase of the Lyapunov–Krasovskii functional (LKF) on all the switching times, the extended stability criteria for switched delay systems in generally nonlinear setting are derived first. Then, we focus on switched nonlinear input delay systems where the presence of the input delay leads to the instability of some subsystems of it. By explicitly constructing input-to-state stable LKF, the sufficient conditions for ISS of switched nonlinear input delay systems under asynchronous switching are presented. Finally, two examples are given to illustrate the effectiveness of the proposed theory.  相似文献   

2.
In this correspondence, the problem of exponential stability for switched genetic regulatory networks (GRNs) with time delays is investigated. The GRNs are composed of N modes and the network switches from one mode to another. By employing the piecewise Lyapunov functional method combined with the average dwell time approach and by using a novel Lyapunov–Krasovskii functional (LKF), sufficient criteria are given to ensure the exponential stability for the switched GRNs with constant and time-varying delays, respectively. These criteria are proved to be much less conservative than the most recent results, since the results reported in this paper not only depend on the delay bounds, but also depend on the partitioning. All the conditions presented here are in the form of matrix inequalities which are easy to be verified via the Matlab toolbox. Two examples are provided in the end of this paper to illustrate the effectiveness of the obtained theoretical results.  相似文献   

3.
The switching signal design for global exponential stability of discrete switched systems with interval time-varying delay is considered in this paper. Some LMI conditions are proposed to design the switching signal and guarantee the global exponential stability of switched time-delay system. Some nonnegative inequalities are used to reduce the conservativeness of the systems. Finally, two numerical examples are illustrated to show the main result.  相似文献   

4.
In this paper, the problem of stabilization for a class of switched delay systems with polytopic type uncertainties under asynchronous switching is investigated. When the switching of the controllers has a lag to the switching of subsystems, i.e. the switching signal of the switched controller involves delay, parameter-dependent Lyapunov functionals are constructed, which are allowed to increase during the running time of active subsystems with the mismatched controller. Based on the average dwell time method, sufficient conditions for exponential stability are developed for a class of switching signals. Finally, a river pollution control problem is given to demonstrate the feasibility and effectiveness of the proposed design techniques.  相似文献   

5.
This paper investigates the event-based asynchronous finite-time control for a class of cyber-physical switched systems under Denial-of-Service (DoS) attacks. Considering the attack’s characteristics, we put forward a novel attack-instant-constrained hybrid event-triggered scheme (HETS), which can not only contribute to reducing the network transmission overload, but also well descibe the network denial service behavior under attack interference. An asynchronous and ZOH-based controller is delicately constructed to mitigate the influence of DoS attacks and network-induced delay. A double-mode dependent Lyapunov–Krasovskii functional (LKF) is developed to set up some sufficient finite-time stability criteria for the concerned systems in view of the asynchronous switching effect. Finally, an application example of the urban railway system is offered to verify the proposed control algorithm.  相似文献   

6.
The synchronization for a class of switched uncertain neural networks (NNs) with mixed delays and sampled-data control is researched in this paper. When a switching signal occurs in a sampling interval, the controller cannot switch until the next sampling instant. There is a mismatch between the system and the controller. Thus, we devise the control strategy to guarantee that the switched NNs can be synchronized. The proposed Lyapunov-Krasovskii functional (LKF) can make full use of system information. By use of an improved integral inequality, some sufficient stability conditions formed by linear matrix inequalities (LMIs) are derived for the synchronization of switched NNs. Average dwell time (ADT) is obtained as a form of inequality that includes the sampling interval. At last, the feasibility of the proposed method is proved by some numerical examples.  相似文献   

7.
This paper is concerned with exploring less conservative stability conditions for a class of switched positive linear systems. A switched matrix-parameterized copositive Lyapunov function (SMPCLF) is first introduced, where “matrix-parameterized” implies that the parameters of the constructed Lyapunov function are distributed in a matrix, which is different from the traditional vector-parameterized copositive Lyapunov function. Based on the proposed SMPCLF, a new stability criterion is derived for the underlying systems under arbitrary switching. Furthermore, by performing higher order relaxations in the SMPCLF and its time difference by positive states, the conservativeness can be further reduced. A numerical example is given to demonstrate the effectiveness and advantages of the obtained theoretical results.  相似文献   

8.
This paper concerns the simultaneous fault detection and control (SFDC) problem for a class of nonlinear stochastic switched systems with time-varying state delay and parameter uncertainties. The switching signal of detector/controller unit (DCU) is assumed to be with switching delay, which results in the asynchronous switching between the subsystems and DCU. By constructing a switching strategy depending on the state and switching delays, new sufficient conditions expressed by a set of linear matrix inequalities (LMIs) is derived to design DCU gains. This problem is formulated as an H optimization problem and both mean square exponential stability and fault detection of augmented system are considered. A numerical example is finally exploited to verify the effectiveness and potential of the achieved scheme.  相似文献   

9.
The paper investigates the design of hybrid state observer-based event-triggered controller for switched linear systems subject to quantized input and unknown but bounded additional disturbance and measurement noise. Firstly, by introducing a hybrid state observer and constructing a mode-dependent event-triggered mechanism, we design event-triggered controller for the considered switched linear systems. Then, by modeling the closed-loop system as an augmented asynchronous switched time-delay system, we deal with the asynchronous control problem caused by the switching between two consecutive trigger instants for the switched linear system. Thirdly, based on merging signal technique and multiple Lyapunov functional method, we obtain the sufficient criteria to guarantee the stability of the switched system when the switching signal meets an average dwell time condition, and further establish the hybrid observer-based event-triggered controller gains. Finally, a simulation example illustrates the validity of the results.  相似文献   

10.
This paper is concerned with stability analysis and stabilization of time-varying delay discrete-time systems in Lyapunov-Krasovskii stability analysis framework. In this regard, a less conservative approach is introduced based on non-monotonic Lyapunov-Krasovskii (NMLK) technique. The proposed method derives time-varying delay dependent stability conditions based on Lyapunov-Krasovskii functional (LKF), which are in the form of linear matrix inequalities (LMI). Also, a PID controller designing algorithm is extracted based on obtained NMLK stability condition. The stability of the closed loop system is guaranteed using the designed controller. Another property that is important along with the stability, is the optimality of the controller. Thus, an optimal PID designing technique is introduced in this article. The proposed method can be used to design optimal PID controller for unstable multi-input multi-output time-varying delay discrete-time systems. The proposed stability and stabilization conditions are less conservative due to the use of non-monotonic decreasing technique. The novelty of the paper comes from the consideration of non-monotonic approach for stability analysis of time-varying delay discrete-time systems and using obtained stability conditions for designing PID controller. Numerical examples and simulations are given to evaluate the theoretical results and illustrate its effectiveness compared to the existing methods.  相似文献   

11.
In this paper, we deal with the finite-time stability of positive switched linear time-delay systems. By constructing a class of linear time-varying copositive Lyapunov functionals, we present new explicit criteria in terms of solvable linear inequalities for the finite-time stability of positive switched linear time-delay systems under arbitrary switching and average dwell-time switching. As an important application, we apply the method to finite-time stability of linear time-varying systems with time delay.  相似文献   

12.
《Journal of The Franklin Institute》2019,356(17):10296-10314
This paper investigates the problem of distributed event-triggered sliding mode control (SMC) for switched systems with limited communication capacity. Moreover, the system output and switching signals are both considered to be sampled by distributed digital sensors, which may cause control delay and asynchronous switching. First of all, a novel distributed event-triggering scheme for switched systems is proposed to reduce bandwidth requirements. Then, a state observer is designed to estimate the system state via sampled system output with transmission delay. Based on the observed system state, a switched SMC law and corresponding switching law are designed to guarantee the exponential stability of the closed-loop system with H performance. Finally, an application example is given to illustrate the effectiveness of the proposed method.  相似文献   

13.
《Journal of The Franklin Institute》2019,356(18):11520-11545
This paper focuses on the stability analysis and stabilization problem for a class of uncertain switched delay systems with Lévy noise and flexible switching signals which unify the high-frequency switching and low-frequency switching. By employing the theory of switched systems, mathematical induction and stochastic analysis technique, some sufficient conditions in form of algebraic inequalities are derived to guarantee the stability and stabilization of such systems. Different from dwell time and average dwell time, the proposed switching rule constrained the partial dwell-time shows that the switching number in the same time interval can be more elastic. Finally, numerical examples are implemented to illustrate the effectiveness of the theoretical results.  相似文献   

14.
This article investigates the stability analysis for a class of continuous-time switched systems with state constraints under pre-specified dwell time switchings. The state variables of the studied system are constrained to a unit closed hypercube. Firstly, based on the definition of set coverage, the system state under saturation is confined to a convex polyhedron and the saturation problem is converted into convex hull. Then, sufficient conditions are derived by introducing a class of multiple time-varying Lyapunov functions in the framework of pre-specified dwell time switchings. Such a dwell time is an arbitrary pre-specified constant which is independent of any other parameters. In addition, the proposed Lyapunov functions can efficiently eliminate the “jump” phenomena of adjacent Lyapunov functions at switching instants. The feature of this paper is that the definition of set coverage is utilized to replace the restriction on the row diagonally dominant matrices with negative diagonal elements to analyze stability. The other feature of the constructed time-varying Lyapunov functions is that there are two time-varying functions. One of the two time-varying functions contains the jump rate, which will present a certain degree of freedom in designing the dwell time switching signal. An iterative linear matrix inequality (LMI) algorithm is presented to verify the sufficient conditions. Finally, two examples are presented to show the validity of the method.  相似文献   

15.
This paper investigates the stability of linear control systems with aperiodic sampled data and communication delays. A systematic analysis method is presented and then it is applied to an electric power market. Firstly, the sampled-data system is transformed into a system with a special time-varying delay via the input delay method. Secondly, a less conservative stability criterion is derived based on Lyapunov theory. Several augmented terms and an extra integral term are introduced during the constructing of candidate Lyapunov–Krasovskii functional (LKF); and an improved free-weighting matrix approach is used to handle with the LKF itself and its derivative for obtaining the relaxed conditions ensuring the positive and decreasing requirements of the LKF. The benefit of those treatments on the conservativeness-reducing is analyzed and verified based on a simple numerical example. Finally, the application of the proposed method to a simplified electric power market is investigated, including modeling the system with market clearing time and communication delay, and determining the stability region. The application also shows the practical significance of the reducing of the conservativeness.  相似文献   

16.
The problem of modeling and stabilization of a wireless network control system (NCS) is considered in this paper, where packet loss and time delay exist simultaneously in the wireless network. A discrete-time switched system with time-varying delay model is first proposed to describe the system closed by a static state feedback controller. A sufficient criteria for the discrete-time switched system with time-varying delay to be stable is proposed, based on which, the corresponding state feedback controller is obtained by solving a set of linear matrix inequalities (LMIs). Numerical examples show the effectiveness of the proposed method.  相似文献   

17.
This paper studies the event-based consensus problem of second-order multi-agent systems with actuator saturation under fixed topology and Markovian switching topologies. By a model transformation, the consensus problem is first converted into the stability problem of the error system. Using discontinuous Lyapunov functional approach, two sufficient conditions on the consensus are derived for second-order multi-agent systems with fixed topology and Markovian switching topologies, respectively. The discontinuous Lyapunov functions take full account of the characteristics of the sawtooth delay, and thus lead to a less conservative consensus criterion. It is shown that the consensus condition depends on the parameters of sampling period, Laplacian matrix, and event-triggered parameter. In addition, this paper provides an effective method to co-design both the consensus controller and the event-triggered parameter. Finally, two numerical examples are provided to illustrate the effectiveness and feasibility of the proposed algorithm.  相似文献   

18.
This paper deals with stability of discrete-time systems with an interval-like time-varying delay. By constructing a novel augmented Lyapunov functional and using an improved finite-sum inequality to deal with some sum-terms appearing in the forward difference of the Lyapunov functional, a less conservative stability criterion is obtained for the system under study if compared with some existing methods. Moreover, as a special case, the stability of discrete-time systems with a constant time delay is also investigated. Three numerical examples show that the derived stability criteria are less conservative and require relatively small number of decision variables.  相似文献   

19.
Novel stability criterion is presented for the existence, uniqueness and globally asymptotic stability of the equilibrium point of a class of cellular neural networks with time-varying delays. Based on Gu's discretized Lyapunov–Krasovskii functional (LKF) theory, a novel vector LKF is introduced by dividing the variation interval of the time delay into several subintervals with equal length. By using the homeomorphism mapping principle, free-weighting matrix method and linear matrix inequality (LMI) techniques, the obtained condition is less conservative than some previous results. Three examples are also given to show the effectiveness of the presented criterion.  相似文献   

20.
For the switched time-delay systems, the delay-dependent stability criteria will be derived under a state-driven switching law. A linear state transformation was introduced to transfer the switched time-delay system. On delay dependent stabilization analysis, we apply the Lyapunov-Krasovskii functionals to analyze the stabilization of the switched time-delay systems. This method can be applied to cases when all individual switched systems are unstable. Finally, one example is exploited to illustrate the proposed schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号