首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
若正数 a、b 满足 ab=a b 3,则 ab 的取值范围是(1999年高考理科第(17)题).下面给出此题的六种解法,供参考.解法1 因为 ab=a b 3,a>0,b>0,所以(a-1)b=a 3.且 a-1>0,所以 b=(a 3)/(a-1).ab=(a~2 3a)/(a-1)=(a-1) 4/(a-1) 5≥2 4~(1/2) 5=9.当且仅当 a-1=4/(a-1)即 a=3时取等号.  相似文献   

2.
<正>1.知识具备x2≥0→(a-b)2≥0→a2+b2-2ab≥0,即:(1)a2+b2≥2ab,注意乘积为定值,平方和有最小值,当且仅当a=b时取等号.(2)ab≤a2+b22,注意平方和为定值,乘积有最大值,当且仅当a=b时取等号.若a、b∈R+,则有:(3)a+b≥2 ab%姨,乘积为定值,和有最小值,当且仅当a=b时取等号.(4)ab≤(a+b2)2,和为定值,乘积有最大值,当且仅当a=b  相似文献   

3.
一、等式与不等式的转化例1若正数a,b满足ab=a+b+3,则ab的取值范围是______.分析为了求ab的取值范围,只要将原等式转化为不等式即可.解运用不等式a+b≥2ab姨,原等式可化为不等式.∵ab=a+b+3≥2ab姨+3,∴ab-2ab姨-3≥0.又ab姨>0,∴ab姨≥3,即ab≥9.例2已知不等式a2+b2+c2+4≤ab+3b+2c,求正整数a,b,c.分析本题所给的是不等式,而求的是a,b,c,故应将原不等式转化为3个等式,才能解决问题.解∵不等式的两边是整数,∴将a2+b2+c2+4≤ab+3b+2c配方得(a-b2)2+3(b2-1)2+(c-1)2≤0.则有a-b2=0,b2-1=0,c-1=0,∴原不等式有唯一的一组解a=1,b=2,c=1.二、常…  相似文献   

4.
如果a,bR,那么a2+b2≥2ab(当且仅当a=b时取“=”号).该结论利用作差法极易证明.下面给出其推论及应用.推论1如果a,b是正数,那么a+b2≥ab√(当且仅当a=b时取“=”号).这个定理又可叙述为:两个正数的算术平均数不小于它们的几何平均数.其应用极其广泛,常用于求最值、比较大小、求取值范围和证明不等式等.例1若实数a,b满足a+b=2,则3a+3b的最小值是A.18B.6C.23√D.234√解3a+3b≥23a·3b√=23a+b√=6(当且仅当a=b=1时取“=”号).即3a+3b的最小值为6.选B.推论2如果a,bR,那么a2+b2≥2|ab|(当且仅当|a|=|b|时取“=”号).证明∵a2+b2=…  相似文献   

5.
1.直接代入例1 当a=1/2,b=-3时,求代数式a2- 2ab b2的值.分析对于较简单的代数式求值,只要把字母的取值直接代入即可.解当a=1/2,b=-3时, a2-2ab b2 =(1/2)2-2×(1/2)×(-3) (-3)2 =(1/4) 3 9=12(1/4). 2.整体代入例2 已知(a-2b)/(a 2b)=5,求代数式  相似文献   

6.
第36届IMO第2题,可推广得如下四个命题: 命题1 设a、b、c∈R~ ,且abc=1,则1/a~3(b c) 1/b~3(c a) 1/c~3(a b)≥1/2(bc ca ab)(1),当且仅当a=b=c=1时等式成立。 证 易知(2)等价于b~2c~2/a(b c) c~2a~2/b(c a) a~2b~2/c(a b)≥1/2(bc ca ab)(2)。由平均值不等式可得: b~2c~2 (1/4)a~2(b c)~2≥abc(b C), ∴b~2c~2≥abc(b c)-(1/4)a~2(b c)~2,  相似文献   

7.
我们知道,对于任意的实数a和b,有a2+ b2≥2ab(1)当且仅当a=b时取等号,若ab >0,在(1)的两边同除以ab,即得a/b+b/a≥2(2),当且仅当a=b时取等号. 在(1)中,若令u=a2,v=b2,显然u≥0, v≥0。则有,当且仅当u=v时取等号,现在我们利用这些重要不等式来解一  相似文献   

8.
几个重要不等式的应用技巧   总被引:1,自引:0,他引:1  
从实际教学中发现 ,许多同学对现行高中代数第五章“不等式”的深入理解、掌握往往有一定的难度 ,下面就结合教学实际对四个重要不等式 :a2 b2 ≥ 2 ab(a,b∈ R当且仅当 a =b时取等号 ) ;a b2 ≥ ab (a,b∈ R 当且仅当 a =b时取等号 ) ;a3 b3 c3≥ 3abc(a,b,c∈ R 当且仅当 a =b =c时取等号 ) ;a b c3 ≥ 3 abc(a,b,c∈ R 当且仅当 a =b =c时取等号 )的应用技巧作一初步探讨。1 累用——重复使用并累加例 1 已知 a、b∈ R,求证 :a2 b2 1≥ a b ab分析 本题形如 :a2 b2 c2≥ ac bc ab(a,b,c∈ R)所以只需…  相似文献   

9.
1 问题提出我们经常看到这样一道题:已知a >0 ,b >0 ,且a b =1 ,求(a 1a) 2 (b 1b) 2 的最小值.该题通常这样求解:(a 1a) 2 (b 1b) 2 =a2 b2 1a2 1b2 4=(a b) 2 -2ab 1a2 1b2 4=5 -2ab 1a2 1b2 ≥5 -2 ( a b2 ) 2 2ab=92 2ab≥92 2( a b2 ) 2=2 52 .当且仅当a =b时取等号.作为上题的推广,我们自然会想到问题1 :已知x >0 ,y >0 ,且x y =1 ,求函数f1(x ,y) =(x 1x) 3 ( y 1y) 3的最小值.对于问题1 ,我们同样可以如下求解:由题设条件可求得0 相似文献   

10.
在中学数学教学研究的期刊上常出现下述平均值不等式: 设以a,b∈(0,+∞),则a2+b2/a+b≥√a2+b2/2≥a+b/2≥√ab≥2ab/a+b. 本文将给出这五个平均值不等式之间的“问距”大小关系. 命题 设a,b∈(0,+∞),记△1=a2+b2/2-√a2+b2/2,△2=√a2+b2/2-a+b/2,△3=a+b/2-√ab,△4=√ab-2ab/a+b,则△3≥△1≥△2≥△4.等号当且仅当a=b时成立.  相似文献   

11.
不等式a b≥2ab(a、b∈R )(当且仅当a=b时等号成立)a b2≥ab(a、b∈R )(当且仅当a=b是等号成立),其中a b2、ab分别是a与b的算术平均数、几何平均数,故简称其为“均值”不等式或“均值”定理.另外均值不等式可推广为三个(或多个)变元的形式,即:a b c≥33abc(a、b、c∈R )(当且仅当a=b=c时等号成立)a1 a2 a3 … an≥na1a2a3…an(a1,a2,a3,…,an∈R )(当且仅当a1=a2=a3=…=an时等号成立)均值不等式的功能除用于比较数的大小及证明不等式外,主要用于求函数的最值,在使用均值不等式求最值时必须具有三个缺一不可条件,即为:一正:诸元皆正;二定:…  相似文献   

12.
高级中学数学第二册 (上 )第六章一组不等式 :1 如果a ,b ∈R ,那么a2 b2 ≥2ab(当且仅当a =b时取“=”号 ) (P9性质定理 ) .2 .已知a ,b是正数 ,且a≠b .求证a3 b3>a2 b ab2 (P12 例 3) .3.如果a ,b是正数 ,且a≠b是正数求证a6 b6 >a4 b2 a2 b4 (P16 习题 2 ) .从结构上看 ,三式之间有惊人的相似 ,反映了相关数学的本质属性 .由此类比拓展 ,可以得到更一般性的结论 ,形成新的解题序列 ,发挥教材的效应 .引申 1 如果a ,b是正数 ,那么an bn≥an- 1b abn- 1(n∈N ,n >1 ) (当且仅当a=b时取“=”号 ) .证明 an bn - (an- 1b abn- 1)…  相似文献   

13.
本文介绍的勾股不等式的证明很简单,它在应用中却很方便。命题若a≥0,b≥0,c≥0,且a~2+b~2=c~2,则 a+b≤2~(1/2)c (1) 当且仅当a=b时取等号。证明据题设,利用a~2+b~2≥2ab,得 (a+b)~2=a~2+b~2+2ab≤2(a~2+b~2)=2c~2 ∴ a+b≤2~(1/2)c 显然,当且仅当a=b时等号成立。(证毕) 当a,b,c均为正实数时,由a~2+b~2=c~2知a,b,c组成一个直角三角形的三边,故称(1)为勾股不等式。  相似文献   

14.
基本不等式a2+b2≥2ab在不等式的证明中起重要作用,但有些不等式直接用它去证明比较困难,而应用该不等式的变形去证明却比较方便. 变形1a2+b2≥2ab a2+b2≥1/2(a+b)2. 例 1 已知 a,b,c∈R+,且a+b+c=5,a2+b2+c2=9,试证明:1≤a、b、c≤7/3. 证明:由已知 a+b=5-c,a2+b2≥9-c2,∵a2+b2≥1/2(a+b)2,∴9-c2≥1/2(5-c)2,∴3c2-10c+7≤0,∴1≤c≤7/3,同理1≤a≤7/3,1≤b≤7/3. 例2 设a,b∈R+,且a+b=1,求证:(a+1/2)2+(b+1/b)2≥25/2.  相似文献   

15.
题目设a,b,c是正实数,且a+b+c=1,则有(1/(b+c)-a)(1/(c+a)-b)(1/(a+b)-c)≥(7/6)~3(1)当且仅当a=b=c=了1时取到等号.文[1][2]给出了不同的证明方法,本文再给出更简单的证明方法.证明:注意到b~2-b+1=(b-1/3)~2+1/9(8-3b)≥1/9(8-3b),同理有c~2-c+1≥1/9(8-3c),  相似文献   

16.
<正>本文先给出基本不等式的一个等价变形,再举例说明它的广泛应用.结论已知a、b、λ∈R,且b(a+b)> 0,则有ab≥-λ2+(λ+1)2+(λ+1)2a/(a+b),(*)当且仅当a=λb时取等号.证明由不等式a2a/(a+b),(*)当且仅当a=λb时取等号.证明由不等式a2+λ2+λ2b2b2≥2λab,得a2≥2λab,得a2≥2λab-λ2≥2λab-λ2b2b2.两边同时加上ab并整理,得a(a+b)≥b[(2λ+1) a-λ2.两边同时加上ab并整理,得a(a+b)≥b[(2λ+1) a-λ2b].再两边同时  相似文献   

17.
一、均值不等式1.如果a,b∈R ,那么a2 b≥ab,当且仅当a=b时取等号.即若ab为定值时,当且仅当a=b时,a b有最小值2ab;若a b为定值时,当且仅当a=b时,ab有最大值a b22.2.如果a,b,c∈R ,那么a 3b c≥3abc,当且仅当a=b=c时取等号.即若abc为定值时,当且仅当a=b=c时,a b c有最小值33abc;  相似文献   

18.
正人教版必修五给出了基本不等式a+b2≥槡ab(a0,b0),当且仅当a=b时取等号.其变形有:(a+b2)2≥ab;a2+b2≥12(a+b)2.应用基本不等式的条件:①正数;②和定或积定;③相等.基本不等式的一个应用就是求最值.有以下四类问题:一、隐含积定型若a0,b0且a+b的和为定值p,则积ab有最大值ab≤p24.例1已知x0,求y=x+1x的最小值.解y=x+1x≥21x·槡x=2.(当且仅当x=1x时取"=")例2已知x1,求y=x+1x-1的最小值.解y=x+1x-1=x-1+1x-1+1≥2+1=3.(当且仅当x-1=1x-1,x=2时取"=")变式已知x1,求y=x2-x+1x-1的最小值.  相似文献   

19.
题目已知实数a>1,b>1, c>1.求证: a3/b2-1+b3/c2-1+c3/a2-1≥j9√3/2. (1)当且仅当a=b=c=√3时,(1)式等号成立.  相似文献   

20.
题目:已知a、b∈R~ 且a b=1,求证(d 1/a)(b 1/b)≥(25)/4.本文给出该不等式的5种证明.证法1:(分析法)欲证原不等式成立,只需证4(a~2 1)(b~2 1)≥25ab4a~2b~2 4a~2 4b~2 4≥25ab4a~2b~2 4(a b)~2-8ab 4≥25ab4a~2b~2-33ab 8≥0(ab-8)(4ab-1)≥0  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号