首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 296 毫秒
1.
利用基于密度泛函理论的赝势平面波方法对CdS晶体的结构进行了几何优化,在优化的基础上对弹性常数与热力学性质进行了系统地计算.计算结果得到弹性常量C11=82.39GPa、C12=66.68GPa、C44=23.62GPa;零温度与零压下的德拜温度为204.9K;运用线性响应方法确定了声子色散关系,并得到CdS的等容比热容、焓、自由能、熵等热力学函数随温度变化的关系.科用基于密度泛函理论的赝势平面波方法对CdS晶体的结构进行了几何优化,在优化的基础上对弹性常数与热力学性质进行了系统地计算.计算结果得到弹性常量;零温度与零压下的德拜温度为204.9K;运用线性响应方法确定了声子色散关系,并得到CdS的等容比热容、烩、自由能、熵等热力学函数随温度变化的关系.  相似文献   

2.
运用超软赝势平面波第一性原理方法,对立方 AlN 晶体在 0-30GPa 的不同压强下进行了结构几何优化,得到平衡晶格参数;在优化结构的基础上计算了电子结构、弹性常数、体弹模量与德拜温度;结果表明立方氮化铝晶体为间接宽带隙半导体,随着压强的增加,晶格参量减小,弹性常数、体弹模量与德拜温度增加,带隙先增大后减小,在 7GPa 时带隙为 5.117eV,达到最大值.  相似文献   

3.
根据密度泛函理论,采用平面波赝势和广义梯度方法,对硫化钙晶体在0~ 200GPa压强范围内的电子结构与光学性质进行了第一性原理计算.得到零温零压下的原胞晶格常数a=4.029A,带隙为2.390eV;随着压强的增加,能带展宽、带隙逐渐减小到零,吸收光谱与反射光谱的峰值向高能量方向移动,即出现蓝移现象;150GPa为硫化钙晶体从半导体变为导体的临界压强.  相似文献   

4.
使用第一性原理方法研究了MgSiO3正交结构的晶格常数和弹性性质,并结合Debye-Grüneisen模型研究了压力从0到150GPa,温度从0到900K,MgSiO3正交结构的热力学性质,包括常压下晶胞体积V、定压热容CP、定体热容CV、熵S、德拜温度Θ、Grüneisen参数和体弹模量B随温度的变化以及不同压强下CP、CV、S、Θ、体膨胀系数α和Grüneisen参数与温度的关系.常压下计算的热容CP随温度的变化与实验数据符合很好.  相似文献   

5.
运用基于密度泛函的第一原理方法对具有钙钛矿结构BaTiO3的热物理性能进行了计算,得到了BaTiO3的晶格常数、弹性性能和热物理性能,并对电子结构特性进行分析。计算结果表明:计算所得的晶格常数和实验值符合的很好,计算了钙钛矿结构的BaTiO3的单晶弹性常数,并利用Viogt—Reuss—Hill方法获得了多晶的体积模量、剪切模量、杨氏模量、泊松比以及弹性各向异性比。由B/G的比值可知,钙钛矿结构的BaTiO3呈脆性性质。能带结构和电子态密度的计算表明,钙钛矿结构的BaTi03是一个具有1.59eV能隙的间隙半导体。利用准谐德拜模型.计算了该化合物的热熔和热膨胀系数随温度和压强的变化关系。  相似文献   

6.
利用第一性原理超软赝势平面波的方法,对氟化钙晶体在0~300GPa范围内进行了几何优化,计算了弹性常量、体弹性模量和德拜温度.发现随着压强的增大,晶格参数减小,原胞体积减小,体弹性模量增大,德拜温度先升高后降低.  相似文献   

7.
通常晶体熔化时弹性常数C44和(C11-C12)/2就将消失,由此提出晶体熔化的力学判据.本文采用第一性原理研究了高温下钼的弹性性质,并且得出结论:在计算温度范围内钼没有熔化并且弹性常数C11、C12、C44随着温度的升高逐渐减小.最后采用准谐德拜模型方法对钼的热力学性质进行了研究,得出了比较好的结论.  相似文献   

8.
运用密度泛函理论平面波超软赝势,对镁离子掺杂的钙铝氧化物磷光体(Mg0.5Ca0.5Al2O4)的电子结构和光学性质进行了计算.计算结果表明,杂质的引入使材料的带隙降低了0.43 eV,光学吸收范围展宽,吸收强度增大,在低能吸收区出现一个额外吸收峰.对电子结构的分析表明,杂化了的Ca3d轨道与O2p轨道的强相互作用占据着导带底部,镁杂质能级进入导带靠近导带底部是决定掺杂材料光学性质的主要因素.  相似文献   

9.
运用密度泛函(DFT)平面波赝势方法(PWP),计算了钠锰氧化物三种物相的状态方程及其电子结构.研究结果表明:利用状态方程得到的钠锰氧化物从尖晶石型结构的SP相转变为CF相和CT相的相变压强分别为4.94 Gpa和20.48 GPa,CF相与实验值误差仅为+0.44 Gpa.进一步对CT相钠锰氧化物的能带结构和态密度的分析表明钠锰氧化物CT相是一种带隙为2.15 eV的窄禁带半导体材料.靠近费米能级附近的Mn-3d电子轨道和O-2p电子轨道的强烈杂化决定了材料的电子性质.  相似文献   

10.
运用密度泛函理论结合非平衡格林函数方法,对5个Si原子构成的链耦合在Au(100)之间所形成的三明治结构的纳米结点的电子输运性质进行了第一性原理计算,结果得到在两极距离为20.556 A时,几何结构最稳定,此时平衡电导为0.711G0(=2e2/h);在此稳定结构中,把中间的一个Si原子替换成C原子后,其平衡电导为1.344Go.电子主要是通过Si原子链的p电子轨道进行传输的.在-1.0~1.0V的电压范围内,随着正负偏压的增大,电导减小;在相同电压下,掺C后的Si链的电导比未掺杂Si链的电导大,即掺C能有效提高Si链的电子传输性能.  相似文献   

11.
基于第一性原理平面波赝势密度泛函方法,研究了ZnS的高压结构相变和弹性性质.计算结果表明,在零温下ZnS从B3结构到B1结构的相变压强为17.04 GPa,这与实验值和其他的理论计算结果符合得很好.  相似文献   

12.
采用第一性原理的平面波赝势方法,结合广义梯度近似,分别计算了在常压和高压下,C掺杂碱土金属氧化物X4CO3(X=Ca,Sr和Ba)的磁矩,体积和总能量随压强的变化情况以及Ca4CO3的能带结构和电子态密度。结果表明,随着压强的增大,X4 CO3的铁磁性减弱最终发生磁相变由铁磁态转变为非铁磁态。特别是Ca4 CO3在69 GPa时,C原子的自旋贡献随着压强的增大显著地下降。  相似文献   

13.
用密度泛函理论B3LYP方法,在6-311G(d,p)基组下,优化得到C2(a3Πu)+C2H6→C2H+C2H5反应各驻点(反应物、过渡态和产物)的几何构型,对其进行振动分析,并计算了它们的能量.在CCSD/6-311G(d,p)水平下单点能计算得到的反应势垒为24.47kJ/mol.采用传统过渡态理论,计算了温度范围50K~2000K的反应速率常数.实验结果表明,随着反应温度的升高,反应速率逐渐升高,反应的平均活化能也随着温度的不断升高而不断增大.  相似文献   

14.
Amorphous SiBCNAl powders were prepared via a mechanical alloying (MA) technique using crystalline silicon (Si), hexagonal boron nitride (h-BN), graphite (C), and aluminum (Al) as starting materials. SiBCNAl powders were consolidated by a hot pressing (HP) technique at 1800 °C under a pressure of 30 MPa in argon and nitrogen. The sintering atmosphere had a great influence on the microstructures and mechanical properties of the ceramics. The two ceramics had different phase compositions and fracture surface morphologies. For the ceramics sintered in argon, flexural strength, fracture toughness, elastic modulus and Vickers hardness were 421.90 MPa, 3.40 MPa·m1/2, 174.10 GPa, and 12.74 GPa, respectively. For the ceramics sintered in nitrogen, the mechanical properties increased, except for the Vickers hardness, and the values of the above properties were 526.80 MPa, 5.25 MPa·m1/2, 222.10 GPa, and 11.63 GPa, respectively.  相似文献   

15.
文章采用荧光光谱技术研究了在不同的酸度和温度条件下,间-硝基苯胺与牛血清白蛋白间的相互作用机制.采用荧光猝灭法讨论了不同pH条件下邻硝基苯胺与牛血清白蛋白间的猝灭类型,计算了不同温度和pH条件下的结合常数,并根据热力学参数确定了其主要结合作用力的类型.研究结果表明,间-硝基苯胺对牛血清白蛋白有较强的荧光猝灭作用,符合静态猝灭机理,二者之间的结合作用力主要是范德华力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号