首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
如图1,已知AO是平面α的一条斜线, A是斜足,OB垂直于α,B是垂足,则直线AB是斜线AO图1在平面α内的射影.设AC是α内的任一直线.设AO与AB所成的角为θ1,AB与AC所成的角为θ2,AO与AC所成的角为θ.则cosθ=cosθ1cosθ2.由此我们得到最小角定理:平面的斜线和它在平面内的射影所成的角,是这条斜线和这个平面内任一条直线所成的角中的最小的角.  相似文献   

2.
高中数学课本第二册(下B)的夹角与距离部分有这样一个典型问题:已知AO是平面α的斜线,A是斜足,直线OB⊥α,垂足是B,直线AB是斜线OA在α上的射影,AC是平面α内的一条直线,且BC⊥AC,垂足是C,设AO与AC所成的角为θ,AO与AB所成的角为θ1,AC与AB所成的角为θ2,则  相似文献   

3.
在教材中 ,不乏典型的基本图形 ,教学中如能加以研究 ,当能使知识的掌握更为牢固 ,方法的应用更加灵活 ,既能培养学生的探究创新能力 ,又能使学生享受到成功的喜悦 .下面举一例 ,加以说明 .1 基本图形的来源      图 1在新教材第 4 4页中 ,有如下内容 :如图 1,已知AO是平面α的斜线 ,A是斜足 ,OB垂直于α ,B为垂足 ,则直线AB是斜线AO在平面α内的射影 .设AC是α内的任一条直线 ,AC ⊥OC ,垂足为C ,又设AO与AB所成的角为θ1,AB与AC所成的角为θ2 ,AO与AC所成的角为θ ,经过推导得到 cosθ=cosθ1·cosθ2 .图 1中 ,三棱…  相似文献   

4.
1教学过程片断一:如图1,AB是平面α的垂线,AC是平面α的斜线,BC为斜线AC在平面α内的射影.教师:AB可以垂直平面α内的任意一条直线,斜线AC可以垂直平面α内的任意—条直线吗?AC能垂直平面α内的哪些直线呢?图1教师要求同桌两位同学协作,以桌面为平面α,三支笔分别代表垂线AB,斜  相似文献   

5.
立几课本中第33页11题: 经过一个角的顶点引这个角所在平面的斜线,如果斜线和这个角两边的夹角相等,那么斜线在平面上的射影是这个角的平分线所在直线. 立几课本中第122页第3题:AB和平面a所成角是θ1,AC在平面a内,AC和AB的射影AB'所成角θ2,设∠BAC=θ,求证:cosθ1·cosθ2=cosθ.(如图1)  相似文献   

6.
片断一:如图1,AB是平面α的垂线,AC是平面α的斜线,BC为斜线AC在平面α内的射影.(图中其余直线根据后面讲述需要再添)  相似文献   

7.
新教材第九章(B)中的第44页有如下公式:cosθ=cosθ1cosθ2,它的几何解释如下:如图1,已知OA是平面α的斜线,A为斜足,OB⊥α,垂足为B,AC为α内任一直线.AO与AB所成的角为θ1(线面角);AB与AC所成的角为θ2(面内角);AO与AC所成的角为θ(面外角).  相似文献   

8.
今年高考理科数学第四题是立几计算题:“如图,设平面AC和BD相交于BC,它们所成的一个二面角为45°,P为面AC内的一点,Q为面BD内的一点。已知直线MQ是直线PQ在平面BD内的射影,并且M在BC上。又设PQ与平面BD所成的角为β,∠CMQ=θ(0°<θ<90°),线段PM的长为a。求线段PQ的长。”这题主要是考查立几中斜线在平面内的射影、二面角及其平面角、斜线与平面所成的角等重要概念和三垂线定理,考查空间图形的想象能力和综合运用知识的能力。这道试题实际是以课本第42页的例题为基础,加进斜线在平面内的射影、斜线与平面所成的角两个概念后略加变  相似文献   

9.
下面是立体几何中一个重要定理——三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的正射影垂直,那么它也和这条斜线垂直.如果把三垂线定理的条件一般化,我们可以得到如下命题:如图,AB 和平面α所成的角为θ_1,AC 在平面α内,AC 和  相似文献   

10.
(一)首先要求学生牢固地掌握斜线或斜线段在平面上的射影概念.因为它是学好“三垂线定理”的必具知识,所以在教学时可先复习检查学生对这部分知识掌握的情况.可提出如图(1)中,已知斜线 l∩a=c,如何作出 l 在平面 a 上的射影?更进一步追问如图(2)中的斜线段 AC 在 a 上的射影是什么?如何作?这时有的学生往往把斜线段延长求得它与平面 a 的交(斜足),  相似文献   

11.
凌艺国 《数学教学》2008,(3):25-25,10
在人教版《数学》第二册(下)直线与平面所成的角一节中有一个公式:cosθ=cosθ1cosθ2.如图1,AO是平面α的斜线,A是斜足,OB垂直于α,B为垂足,则直线AB是斜线在平面α内的射影.  相似文献   

12.
一、选择题(每小题5分,共50分)1.下列命题中,正确的是A.若直线a,与直线l所成的角相等,则a∥b b B.若直线a,与平面α成相等角,则a∥b b C.若平面α,β与平面γ所成的角均为直二面角,则α∥βD.若直线a,在平面α外,且a⊥α,⊥b,则b∥αb a2.已知空间四边形ABCD,M,N分别是AB,CD的中点,且AC=4,BD=6,则A.1相似文献   

13.
下面三题都是高中《立体几何(必修)》教材中的习题. 题目1 如图,AB和平面α成的角是θ_1,AC在平面α内,AC和AB的射影AB′,所成角为θ_2,设么∠BAC=θ.求证: cosθ_1·cosθ_2=cosθ.(P.117第3题) 题目2 经过一个角的顶点引这个角所在的平面的斜线.如果斜线和这个角两边的夹角相等,那么斜线在平面上的射影是这个角的平分线所在的直线.  相似文献   

14.
“斜线和平面所成的角,是这条斜线和平面内经过斜足的直线所成的一切角中最小的角”,这是斜线和平面所成角的一个重要性质,它在解决立体几何中有关角的不等式问题时,大有用处. [例1]rt△ABC的斜边BC在平面α内,且两直角边AB、AC与α所成的角分别为θ_1、θ_2.求证:  相似文献   

15.
斜线和平面所成的角是高考的常考内容,怎样求斜线和平面所成的角的大小呢?本文介绍如下四种策略.1.利用定义一个平面的斜线和它在这个平面内的射影的夹角,叫做斜线和平面所成的角,寻找斜线和平面所成的角,要在斜线上任取一点作平面的垂线,垂足的定位至关重要.【例1】(2005年高考全国卷Ⅱ)如图,四棱锥P—ABCD中,底面ABCD为矩形,PD⊥底面ABCD,AD=PD,E、F分别为CD、PB的中点.(Ⅰ)求证:EF⊥平面PAB;(Ⅱ)设AB=2BC,求AC与平面AEF所成的角的大小.(Ⅱ)解1,如图1,延长AE、BC相交于G,连结FG,则FG为平面PBC与平面AEF的交线,而证…  相似文献   

16.
<正>在平面向量的学习中,经常出现形如AO=xAB+yAC的向量关系,条件使用比较抽象。本文旨在抛砖引玉,为AO=xAB+yAC向量关系问题的解决,提供一些解题思路,具体方法可归纳为解析法与代数法。例1如图1,已知O是△ABC的外心,AB=2a,AC=2/a,∠BAC  相似文献   

17.
平面向量基本定理:如果e1,e2是同一平面内两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.这是一个重要的定理,它反映了平面向量分解的唯一性,利用此唯一性可解决求相交线交成线段比的问题.这类题的关键是:首先选择恰当的基底,再将同一向量用两种不同方法表示,由平面向量基本定理得出方程组解出.例1求证:平行四边形ABCD的对角线互相平分.图1证明:如图1,设AB=a,AD=b,AC与BD相交于O,AO=λAC=λ(a+b),BO=μBD=μ(a-b),则b=AB=AO-BO=λ(a+b)-μ(a-b)=(λ-μ)a+(λ+μ)b由平面向量基本定理知…  相似文献   

18.
已知AB为平面α外一线段,平面α的斜线AC、BD与α所成角是30°、60°,AC=6,BD=2(3~(1/2)),AB=5。求证:AB∥α。证如图,AB在平面α内的射影为A_1B_1,则 AA_1=6sin30°=3 BB_1=2(3~(1/2))sin60°=3,  相似文献   

19.
<正>在立体几何的学习中,大家都知道三余弦定理(又称最小角定理,反映的是斜线和它在平面内射影所成角是斜线与平面内任一直线所成角的最小值),但只有少数人知道还有三正弦定理(又称最大角定理).本文主要介绍三正弦定理的内容、证明及其应用.一、三正弦定理如图1,设二面角M-AB-N的度数为锐角α,在平面M上有一条射线AC,它与棱AB所成角为锐角β,与平面N所成角为锐角γ,则有sin γ=sin βsin α.  相似文献   

20.
例.正方体AC′棱长为a,求BD与AB′的距离。解一辅助线如图1,其中OE⊥AO′,从而OE⊥平面AB′D′。但BD∥平面AB′D′,因此OE长就是要求的距离。(计算略)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号