首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
设等差数列 {an}是以a1 为首项 ,以d为公差的等差数列 ,其前n项和记作Sn =S(n) .结论 1 若a1 >0 ,且d <0 ,则其数列前n项和有最大值Sn(max) =S( -a1 d) =S( 1-a1 d)=a1 2d(d-a1 ) ,( -a1 d ∈N )或Sn(max) =S( [-a1 d] +1) ,(其中 ,a1 d ∈R+ ,取n=[-a1 d] +1.[x]表示不大于X的整数部分 )证明 :∵a1 >0 ,d<0 ,∴数列 {an}前n项和Sn =S(n)必有最大值 .∴a1 ≥ 0且an+ 1 ≤ 0 ,即a1 +(n-1)d≥ 0且a1 +nd ≤ 0 ,解得n ≤ 1-a1 d 且n ≥-a1 d.讨论 :( 1)当 a1 d ∈N 时 ,则Sn(max) =S( -a1 d)=( -a1 d) +( -a1 d) ( -a1 d -1)2 d=a1 (d-a…  相似文献   

2.
问题设a1,a2,a3,…,an都是正数,且a1a2a3…an=1.试用数学归纳法证明:a1 a2 a3 … an≥n.错证(1)当n=1时,a1=1,结论显然成立.(2)假设n=k时,结论成立,即a1a2a3…ak=1时,a1 a2 a3 … ak≥k成立.当n=k 1时,a1 a2 a3 … ak ak 1≥k ak 1,而a1a2a3…akak 1=1,所以ak 1=1,从而a1 a2 a3 … ak ak 1≥k 1.这就是说,当n=k 1时,结论仍成立.由(1)(2)可知,对任意的n∈N*,结论成立.剖析在归纳假设中,由a1a2a3…ak=1(其中ai>0,i=1,2,…,k),则有a1 a2 a3 … ak≥k成立,其实质是若k个正数的积是1,则这k个正数的和不小于k.在递推中,当n=k 1时,有a1a2a3…akak …  相似文献   

3.
新教材将数列放在高一讲授 ,并提出了递推公式的概念 ,笔者认为这是一个很重要的信息 ,许多数列问题中的通项主要由递推关系给出的 ,递归数列在竞赛试题中也是屡见不鲜 .本文举例谈谈线性递归数列求通项的几种常见类型和方法 ,旨在抛砖引玉 .1 可化为 an+1 -an =f (n)型的递归数列方法 :an =a1 + ∑nk=2(ak -ak-1 ) =a1 +∑nk= 2f (k -1)例 1 已知递归数列a1 =2an -an-1 =2 n (n≥ 2 ) .求 an.解 :an =a1 + ∑nk=2f (k -1) =a1 + ∑nk=2(2 k) =n2 + n.2 可化为 an+1 an=f (n)型的递归数列方法 :变形为 anan-1=f (n -1) ,an-1 an-2=f (n -…  相似文献   

4.
(2007年高考天津卷理科21):在数列{}an中,a1=2,a n 1=λa n λn 1 (2?λ)?2n(n∈N?),其中λ>0.(I)求数列{}an的通项公式.以下是命题组提供的两种参考答案.解法一a2=2λ λ2 (2?λ)2=λ2 22,223233a3=λ(λ 2) λ (2?λ)2=2λ 2,334344a4=λ(2λ 2) λ (2?λ)2=3λ 2.由此可猜想出数列{}an的通项公式为an=(n?1)λn 2n.以下用数学归纳法证明.(1)当n=1时,a1=2,等式成立.(2)假设当n=k时等式成立,即ak=(k?1)λk 2k,那么ak 1=λak λk 1 (2?λ)?2k=λ(k?1)λk λ?2k λk 1 2k 1?λ?2k=[(k 1)?1]λk 1 2k 1.这就是说,当n=k 1时等式也成立.根据(1)…  相似文献   

5.
根据递推关系式写出数列的通项公式既是考查学生对数列这部分知识是否掌握的试金石,也是考查学生的观察能力、推理能力、判断能力的重要手段.因此,对学生递推能力的考查一直是高考关注的重点.本文将对高中阶段出现的几种已知递推关系求数列通项公式的方法进行探讨.※递推公式形如an+1=an+f(n)的数列由上式可得:an=an-1+f(n-1)=an-2+f(n-2)+f(n-1)=…=a1+f(1)+f(2)+f(3)…+f(n-1)例:数列{an}中,a1=1且a2k=a2k-1+(-1)k,a2k+1=a2k+3k,其中k∈N+,求数列{an}的通项公式.解:∵a2k+1=a2k-1+(-1)k+3k,a2k+1-a2k-1=(-1)k+3k,∴a3-a1=(-1)1+31,a5…  相似文献   

6.
一、对于周期数列,先求其周期,再根据已知条件写出数列的通项.【例1】数列{an}中已知a1=1,a2=4且an+2=an+1-an(n是正整数)求a2004及数列{an}的通项公式an.解:∵an+2=an+1-an(1)∴an+3=an+2-an+1(2)由(1)+(2)得an+3=-an,∴an+6=-an+3∴an+6=an,∴6是数列{an}的一个周期.∵a1=1,a2=4,∴a3=a2-a1=3由an+3=-an,可知a4=-a1,a5=-a2,a6=-a3∴a2004=a334×6=a6=-a3=-3∴an=1(n=6k+1)4(n=6k+2)3(n=6k+3)-1(n=6k+4)-4(n=6k+5)-3(n=6k)(k为非负整数)二、对已知的递推关系式利用取对数,因式分解,取倒数、两边平方等方法进行变形构造成简单数列,再求通项…  相似文献   

7.
当数列{an}的递推公式为an 1=an f(n)时,通常使用"累加法"求其通项公式.即将an=an-1 f(n-1),an-1=an-2 f(n-2),……,a2=a1 f(1)各式相加得:an=a1 n-1∑k=1f(k)(n≥2).下面举例说明累加法在求数列通项公式中的应用.  相似文献   

8.
2015高考浙江数学卷好题不断,下面笔者以理科最后一题为例分析考场答题策略,以及对命题作一下加强.第20题已知数列{an}满足:a1=1/2,且an+1=an-a2n(n∈N*).(1)证明:1≤an/an+1≤2(n∈N*).(2)设{a2n}的前n项和为Sn,证明:1/2(n+2)≤Snn≤1/2(n+1).证明(1)因为an+1-an=-a2n≤0,所以an+1≤an,  相似文献   

9.
<正>易错点1端点值处最易出错的三种情形1.一元二次不等式恒成立类问题例如:设(fx)=x2-2ax+2ax+2(a∈R),若当x∈R时,不等试f(x)≥a恒成立,求a的取值范围.分析:当x∈R时,f(x)≥a恒成立,即当x∈R时,x2-2ax+2-a≥0恒成立。∴△=4a2-4(2-a)≤0(易错为)△<0),所以-2≤a≤1。2.使用最值原理时的端点值问题例如:若k>13x3-4x当x∈(2,3)恒成立,求k的取值范围。分析:由导数分析可知,当x∈(2,3)时f(x)=13x3-4x单调递增,故k应大于f(x)的最大值,而由于  相似文献   

10.
证明形如a1 a2 … an≥f(n)的不等式,通常是用数学归纳法,但若将f(n)看做是一个数列{bn}的前n项和,则可通过证明an≥bn进而证明a1 a2 … an≥b1 b2 … bn=f(n)成立.  相似文献   

11.
形如an=f(n)×qn(其中f(n)是关于n的多项式)的数列可用错位相减法求和,但f(n)的次数较高时用错位相减法比较麻烦.下面就来探讨拆项在相关数列问题中的应用. 一、拆项在数列求和中的应用 1.可行性分析 如果能找到一个数列{bn},使得an =bn+1-bn,那么数列{an}的前n项和Sn=a1 +a2+…+an=(b2-b1)+(b3-b2)+…+(bn+1-b1)一般地,当an=bn+k-bn或an=bn-bn+k(其中n∈N+,k∈N+,且k为常数)时,都可快速求和.  相似文献   

12.
对于由递推式所确定的数列通项公式问题,通常可通过对递推式的变形转化成等差数列或等比数列把问题解决.这类问题多年来一直是高考久考不衰的热点题型,尤其是2004年全国高考试题十分明显,直接求此类问题的通项公式,许多学生常常感到困惑不解,有时显得束手无策.下面分类说明.一、an+1=an+f(n)型此种类型常常化为an+1-an=f(n)构造阶差,采用累加的方式,可得通项公式.例1已知数列邀an妖中,a1=1,且a2k=a2k-1+穴-1雪k,a2k+1=a2k+3k,其中k=1,2,3,…,求邀an妖的通项公式.解∵a2k+1=a2k+3k=a2k-1+(-1)k+3k,∴a2k+1-a2k-1=3k+(-1)k,同理,a2k-1-a2k-3=3…  相似文献   

13.
由于数列是定义域为自然数集的函数,因此函数的思想是贯穿数列的一种重要思想方法.等差数列和等比数列的通项公式及前n项和公式都可以看作是n的函数,借助有关函数的定义性质来解决数列问题,常能起到化难为易的作用,本文列举几例分类剖析.一、运用函数单调性解数列问题例1已知数列{an}的通项公式为an=9n(n+1)10n(n∈N),问n为何值时,an最大?分析:因为an+1-an=9n+1(n+2)10n+1-9n(n+1)10n=9n10n+1(8-n),所以当1≤n≤8时an关于n是增函数,当n≥8时an关于n为减函数,由此可知当n=8时,an=an+1最大,即a8、a9为最大.例2已知数列{an}的通项公式是ak=1n+…  相似文献   

14.
<正>已知数列{an}满足:an=pan-1+qan-2(n∈N+,n≥3),给定a1及a2(a12+a22≠0),其特征方程为x2-px-q=0(※),判别式△=p2+4q.文[1]作者经过探究给出了此类数列的周期性具有如下结论:(1)当△>0时,当且仅当p=0且q=1时,对于任意的a1及a2(a12+a22≠0),数列{an}是周期数列.特别地,a1≠a2时,数列{an}是以2为周期的周期数列;a1=a2时,数列{an}是以1为周期的周期数列(即常数数列).(2)当△=0时,当且仅当p=2、q=-1且a1=a2时,数列{an}是以1为周期的周期数列(即常数数列),或p=-2、q=-1且a2=-a1时,数列{an}是以2为周期的周期数列.  相似文献   

15.
高考试题,特别是压轴题,凝聚着命题专家的智慧,富含着数学的精神、思想和方法.剖析压轴题的命题背景是研究高考试题,发展解题水平的重要途经.笔者在研究高考试题时,发现2011年和2012年高考数学湖北卷理科压轴题共同的背景和内在的联系. 2011年高考数学湖北卷理科压轴题(以下简称题1)如下: (Ⅰ)已知函数f(x)=lnx-x+1,x∈(0,+∞),求函数f(x)的最大值; (Ⅱ)设ak,bk(k=1,2,…,n)均为正数,证明:(1)若a1 b1+a2 b2+…+anbn≤b1+b2+…+bn,则a1b1 a2b2…anbn≤1;(2)若b1+b2+…+bn=1,则1/n≤b1b1b2 b2…bnbn≤b12+b22+…+bn2.  相似文献   

16.
一、累加法(也叫逐差求和法)利用an=a1+(a2-a1)+…+(an-an-1)(n≥2,n∈N*)求通项公式的方法称为累加法。累加法是求满足关系式an+1=an+f(n)的数列通项公式的基本方法[f(n)可求前n项和]。例1已知数列{an}满足an+1=an+2n+1,a1=1(n∈N*),求数列{an}的通项公式。  相似文献   

17.
数学问答     
116 .问 :函数 f(x) =x2 |x -a| 1的最小值是多少 ?(huangkun1988@tom .com)答 :f(x) =x - 122 a 34(x≤a) ,x 122 34-a(x≥a) .若a≤ - 12 ,则 f(x)在 (-∞ ,a]上单调递减 ,其最小值为 f(a) =a2 1;f(x)在 [a , ∞ )上的最小值是 f - 12 =34-a .因a2 1≥ 34-a ,故 f(x)的最小值是 34-a .若 - 12 ≤a≤ 12 ,则 f(x)在 (-∞ ,a]上单调递减 ,其最小值为 f(a) =a2 1;f(x)在 [a , ∞ )上单调递增 ,其最小值为f(a) =a2 1.故f(x)的最小值为a2 1.若a≥ 12 ,则 f(x)在 (-∞ ,a]上的最小值为 f 12 =a 34;f(x)在 [a , ∞ )上单调递增 ,其最…  相似文献   

18.
陈际瑞 《中学理科》2007,(11):17-19
一、逐减法形如k1a1 k2a2 k3a3 … kn-1an-1 knan=f(n)(其中k1,k2,…,kn为非零常数)型,可再构造等式:k1a1 k2a2 k3a3 … kn-1an-1=f(n-1)(n≥2).然后两式相减,求通项an.【例1】(2007年山东高考)设数列{an}满足:a1 3a2 32a3 … 3n-1an=3n,n∈N*.求数列{an}的通项.解析:由已知a1 3a2 32a3 … 3n-1an=3n①得n≥2时,a1 3a2 32a3 … 3n-2an-1=n3-1②用①-②得,3n-1an=31,an=31n,又由①得,a1=13,满足上式,所以an=31n(n∈N*).二、Sn法形如f(sn,an)=0型,可利用an=S1(n=1)Sn-Sn-1(n≥2)统一成f(an)=0或f(Sn)=0的形式求解.【例2】(2007年重庆高考)…  相似文献   

19.
问题[1]  设a1,a2 ,a3,a4 ∈R+ ,求证a31a2 +a3+a4+a32a3+a4 +a1+a33a4 +a1+a2+a34 a1+a2 +a3≥(a1+a2 +a3+a4 ) 21 2 ①文 [2 ]应用基本不等式 ,将不等式①推广为 :定理 1 设a1,a2 ,… ,an∈R+ ,a1+a2 +… +an=s,k∈N ,k≥ 2 ,则有ak1s-a1+ak2s-a2+… +akns-an≥ sk - 1(n -1 )nk- 2 ②其中等号当且仅当a1=a2 =… =an 时成立。定理 2 设a1,a2 ,… ,an∈R+ ,a1+a2 +… +an=s,k∈N ,k≥ 2 ,则有∑ni=1akis-ai≥ 1n -1 ∑ni=1ak- 1i ③其中等号当且仅当a1=a2 =… =an 时成立。本文给出两点注记 :注记 1 定理 1的条件可以放宽为 :设ai≥ …  相似文献   

20.
试题已知a1=2,点(an,an+1)在函数f(x)=x2+2x的图象上,其中n=1,2,3…(Ⅰ)证明数列{lg(1+an)}是等比数列;(Ⅱ)设Tn=(1+a1)(1+a2)…(1+an),求Tn及数列{an}的通项;(Ⅲ)记bn=a1n+an1+2,求数列{bn}的前n项和Sn,并证明Sn+3Tn2-1=1.解(Ⅰ)由a1=2,且点(an,an+1)在f(x)=x2+2x的图象上,所以an+1=a2n+2an>0(n=1,2,3,…)所以llgg((11++aan+n)1)=lg(1lg+(12+ana+n)a2n)=2,所以数列{lg(1+an)}是以2为公比的等比数列.(Ⅱ)由(Ⅰ)知数列{lg(1+an)}的公比为2,第1项为lg3,从而lg(1+an)=2n-1lg3=lg32n-1,即1+an=32n-1(1)因此数列{an}的通项为an=32n-1-1.由(1)得…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号