首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This paper presents an easy-to-use, power-free, and modular pump for portable microfluidic applications. The pump module is a degassed particle desorption polydimethylsiloxane (PDMS) slab with an integrated mesh-shaped chamber, which can be attached on the outlet port of microfluidic device to absorb the air in the microfluidic system and then to create a negative pressure for driving fluid. Different from the existing monolithic degassed PDMS pumps that are generally restricted to limited pumping capacity and are only compatible with PDMS-based microfluidic devices, this pump can offer various possible configures of pumping power by varying the geometries of the pump or by combining different pump modules and can also be employed in any material microfluidic devices. The key advantage of this pump is that its operation only requires the user to place the degassed PDMS slab on the outlet ports of microfluidic devices. To help design pumps with a suitable pumping performance, the effect of pump module geometry on its pumping capacity is also investigated. The results indicate that the performance of the degassed PDMS pump is strongly dependent on the surface area of the pump chamber, the exposure area and the volume of the PDMS pump slab. In addition, the initial volume of air in the closed microfluidic system and the cross-linking degree of PDMS also affect the performance of the degassed PDMS pump. Finally, we demonstrated the utility of this modular pumping method by applying it to a glass-based microfluidic device and a PDMS-based protein crystallization microfluidic device.  相似文献   

2.
Degas-driven flow is a novel phenomenon used to propel fluids in poly(dimethylsiloxane) (PDMS)-based microfluidic devices without requiring any external power. This method takes advantage of the inherently high porosity and air solubility of PDMS by removing air molecules from the bulk PDMS before initiating the flow. The dynamics of degas-driven flow are dependent on the channel and device geometries and are highly sensitive to temporal parameters. These dependencies have not been fully characterized, hindering broad use of degas-driven flow as a microfluidic pumping mechanism. Here, we characterize, for the first time, the effect of various parameters on the dynamics of degas-driven flow, including channel geometry, PDMS thickness, PDMS exposure area, vacuum degassing time, and idle time at atmospheric pressure before loading. We investigate the effect of these parameters on flow velocity as well as channel fill time for the degas-driven flow process. Using our devices, we achieved reproducible flow with a standard deviation of less than 8% for flow velocity, as well as maximum flow rates of up to 3 nL∕s and mean flow rates of approximately 1-1.5 nL∕s. Parameters such as channel surface area and PDMS chip exposure area were found to have negligible impact on degas-driven flow dynamics, whereas channel cross-sectional area, degas time, PDMS thickness, and idle time were found to have a larger impact. In addition, we develop a physical model that can predict mean flow velocities within 6% of experimental values and can be used as a tool for future design of PDMS-based microfluidic devices that utilize degas-driven flow.  相似文献   

3.
The ability to pump and manipulate fluid at the micron-scale is a basic requirement for microfluidic platforms. Many current manipulation methods, however, require expensive and bulky external supporting equipment, which are not typically compatible for portable applications. We have developed a contactless metal electro-osmotic micropump capable of pumping conductive buffers. The pump operates using two pairs of gallium metal electrodes, which are activated using an external voltage source and separated from a main flow channel by a thin micron-scale polydimethylsiloxane (PDMS) membrane. The thin contactless membrane allows for field penetration and electro-osmotic flow within the microchannel, but eliminates electrode damage and sample contamination commonly associated with traditional DC electro-osmotic pumps that utilize electrodes in direct contact with the working fluid. Our previous work has demonstrated the effectiveness of this method in pumping deionized water. However, due to the high resistivity of PDMS, this method proved difficult to apply towards manipulating conductive buffers. To overcome this limitation, we fabricated conductive carbon black (CB) powder directly into the contactless PDMS membranes. The increased electrical conductivity of the contactless PDMS membrane significantly increased micropump performance. Using a microfluidic T-channel device and an electro-osmotic flow model, we determined the influence that CB has on pump pressure for CB weight percents varying between 0 and 20. The results demonstrate that the CB increases pump pressure by two orders of magnitude and enables effective operations with conductive buffers.  相似文献   

4.
Surface modification is a critical issue in various applications of polydimethylsiloxane (PDMS)-based microfluidic devices. Here, we describe a novel method through which PDMS-based microchannels were successfully modified with fragmented poly(l-lactic acid) (PLLA) nanosheets through a simple patchwork technique that exploited the high level of adhesiveness of PLLA nanosheets. Compared with other surface modification methods, our method required neither complicated chemical modifications nor the use of organic solvents that tend to cause PDMS swelling. The experimental results indicated that the modified PDMS exhibited excellent capacity for preventing the adhesion and activation of platelets. This simple yet efficient method can be used to fabricate the special PDMS microfluidic devices for biological, medical, and even hematological purposes.  相似文献   

5.
We propose a blood separation microfluidic device suitable for point-of-care (POC) applications. By utilizing the high gas permeability of polydimethylsiloxane (PDMS) and phaseguide structures, a simple blood separation device is presented. The device consists of two main parts. A separation chamber with the phaseguide structures, where a sample inlet, a tape-sealed outlet, and a dead-end ring channel are connected, and pneumatic chambers, in which manually operating syringes are plugged. The separation chamber and pneumatic chambers are isolated by a thin PDMS wall. By manually pulling out the plunger of the syringe, a negative pressure is instantaneously generated inside the pneumatic chamber. Due to the gas diffusion from the separation chamber to the neighboring pneumatic chamber through the thin permeable PDMS wall, low pressure can be generated, and then the whole blood at the sample inlets starts to be drawn into the separation chamber and separated through the phaseguide structures. Reversely, after removing the tape at the outlet and manually pushing in the plunger of the syringe, a positive pressure will be created which will cause the air to diffuse back into the ring channel, and therefore allow the separated plasma to be recovered at the outlet on demand. In this paper, we focused on the study of the plasma separation and associated design parameters, such as the PDMS wall thickness, the air permeable overlap area between the separation and pneumatic chambers, and the geometry of the phaseguides. The device required only 2 μl of whole blood but yielding approximately 0.38 μl of separated plasma within 12 min. Without any of the requirements of sophisticated equipment or dilution techniques, we can not only separate the plasma from the whole blood for on-chip analysis but also can push out only the separated plasma to the outlet for off-chip analysis.  相似文献   

6.
The bubble-free and pulse-free fluid delivery is critical to reliable operation of microfluidic devices. In this study, we propose a new method for stable bubble-free and pulse-free fluid delivery in a microfluidic device. Gas bubbles are separated from liquid by using the density difference between liquid and gas in a closed cavity. The pulsatile flow caused by a peristaltic pump is stabilized via gas compressibility. To demonstrate the proposed method, a fluidic chamber which is composed of two needles for inlet and outlet, one needle for a pinch valve and a closed cavity is carefully designed. By manipulating the opening or closing of the pinch valve, fluids fill up the fluidic chamber or are delivered into a microfluidic device through the fluidic chamber in a bubble-free and pulse-free manner. The performance of the proposed method in bubble-free and pulse-free fluid delivery is quantitatively evaluated. The proposed method is then applied to monitor the temporal variations of fluidic flows of rat blood circulating within a complex fluidic network including a rat, a pinch valve, a reservoir, a peristaltic pump, and the microfluidic device. In addition, the deformability of red blood cells and platelet aggregation are quantitatively evaluated from the information on the temporal variations of blood flows in the microfluidic device. These experimental demonstrations confirm that the proposed method is a promising tool for stable, bubble-free, and pulse-free supply of fluids, including whole blood, into a microfluidic device. Furthermore, the proposed method will be used to quantify the biophysical properties of blood circulating within an extracorporeal bypass loop of animal models.  相似文献   

7.
This paper presents a simple-to-construct, low dead volume pump capable of generating a wide range of positive and negative pressures for microfluidic applications. The pump generates pressure or vacuum by changing the volume of air confined inside a syringe and is able to generate pressures between -95 and +300 kPa with a resolution as high as 1 Pa. Different from syringe pumps and electrokinetic pumping, which are capable of controlling flow rates only, our pump can be used to generate constant flow rates or constant pressures, which are required for certain applications such as the aspiration of biological cells for biophysical characterization. Compared to syringe pumps, the new pump has almost zero dead volume and does not exhibit pulsatile flows. Additionally, the system does not require electrical power and is cost effective (~$100). To demonstrate the capabilities of the pump, we used it to aspirate osteoblasts (MC3T3-E1 cells) and to determine Young's modulus of the cells, to generate a concentration gradient, and to produce variable-sized droplets in microchannels using hydrodynamic focusing.  相似文献   

8.
We have previously reported that microthrottle pumps (MTPs) display the capacity to pump solid phase suspensions such as polystyrene beads which prove challenging to most microfluidic pumps. In this paper we report employing a linear microthrottle pump (LMTP) to pump whole, undiluted, anticoagulated, human venous blood at 200 μl min(-1) with minimal erythrocyte lysis and no observed pump blockage. LMTPs are particularly well suited to particle suspension transport by virtue of their relatively unimpeded internal flow-path. Micropumping of whole blood represents a rigorous real-world test of cell suspension transport given blood's high cell content by volume and erythrocytes' relative fragility. A modification of the standard Drabkin method and its validation to spectrophotometrically quantify low levels of erythrocyte lysis by hemoglobin release is also reported. Erythrocyte lysis rates resulting from transport via LMTP are determined to be below one cell in 500 at a pumping rate of 102 μl min(-1).  相似文献   

9.
In this article, we present a microfluidic platform for passive fluid pumping for pump-free perfusion cell culture, cell-based assay, and chemical applications. By adapting the passive membrane-controlled pumping principle from the previously developed perfusion microplate, which utilizes a combination of hydrostatic pressure generated by different liquid levels in the wells and fluid wicking through narrow strips of a porous membrane connecting the wells to generate fluid flow, a series of pump-free membrane-controlled perfusion microfluidic devices was developed and their use for pump-free perfusion cell culture and cell-based assays was demonstrated. Each pump-free membrane-controlled perfusion microfluidic device comprises at least three basic components: an open well for generating fluid flow, a micron-sized deep chamber/channel for cell culture or for fluid connection, and a wettable porous membrane for controlling the fluid flow. Each component is fluidically connected either by the porous membrane or by the micron-sized deep chamber/channel. By adapting and incorporating the passive membrane-controlled pumping principle into microfluidic devices, all the benefits of microfluidic technologies, such as small sample volumes, fast and efficient fluid exchanges, and fluid properties at the micro-scale, can be fully taken advantage of with this pump-free membrane-controlled perfusion microfluidic platform.  相似文献   

10.
Poly(dimethylsiloxane) or PDMS is an excellent material for replica molding, widely used in microfluidics research. Its low elastic modulus, or high deformability, assists its release from challenging molds, such as those with high feature density, high aspect ratios, and even negative sidewalls. However, owing to the same properties, PDMS-based microfluidic devices stretch and change shape when fluid is pushed or pulled through them. This paper shows how severe this change can be and gives a simple method for limiting this change that sacrifices few of the desirable characteristics of PDMS. A thin layer of PDMS between two rigid glass substrates is shown to drastically reduce pressure-induced shape changes while preserving deformability during mold separation and gas permeability.  相似文献   

11.
Polyelectrolyte multilayers (PEMs) based on the combinations poly(diallyldimethylammonium chloride)∕poly(acrylic acid) (PDADMAC∕PAA) and poly(allylamine hydrochloride)∕PAA (PAH∕PAA) were adsorbed on poly(dimethylsiloxane) (PDMS) and tested for nonspecific surface attachment of hydrophobic yeast cells using a parallel plate flow chamber. A custom-made graft copolymer containing poly(ethylene glycol) (PEG) side chains (PAA-g-PEG) was additionally adsorbed on the PEMs as a terminal layer. A suitable PEM modification effectively decreased the adhesion strength of Saccharomyces cerevisiae DSM 2155 to the channel walls. However, a further decrease in initial cell attachment and adhesion strength was observed after adsorption of PAA-g-PEG copolymer onto PEMs from aqueous solution. The results demonstrate that a facile layer-by-layer surface functionalization from aqueous solutions can be successfully applied to reduce cell adhesion strength of S. cerevisiae by at least two orders of magnitude compared to bare PDMS. Therefore, this method is potentially suitable to promote planktonic growth inside capped PDMS-based microfluidic devices if the PEM deposition is completed by a dynamic flow-through process.  相似文献   

12.
In this paper, we present an on-chip hand-powered membrane pump using a robust patient-to-chip syringe interface. This approach enables safe sample collection, sample containment, integrated sharps disposal, high sample volume capacity, and controlled downstream flow with no electrical power requirements. Sample is manually injected into the device via a syringe and needle. The membrane pump inflates upon injection and subsequently deflates, delivering fluid to downstream components in a controlled manner. The device is fabricated from poly(methyl methacrylate) (PMMA) and silicone, using CO2 laser micromachining, with a total material cost of ∼0.20 USD/device. We experimentally demonstrate pump performance for both deionized (DI) water and undiluted, anticoagulated mouse whole blood, and characterize the behavior with reference to a resistor-capacitor electrical circuit analogy. Downstream output of the membrane pump is regulated, and scaled, by connecting multiple pumps in parallel. In contrast to existing on-chip pumping mechanisms that typically have low volume capacity (∼5 μL) and sample volume throughput (∼1–10 μl/min), the membrane pump offers high volume capacity (up to 240 μl) and sample volume throughput (up to 125 μl/min).  相似文献   

13.
This paper reviews the design and fabrication of polydimethylsiloxane (PDMS)-based conducting composites and their applications in microfluidic chip fabrication. Owing to their good electrical conductivity and rubberlike elastic characteristics, these composites can be used variously in soft-touch electronic packaging, planar and three-dimensional electronic circuits, and in-chip electrodes. Several microfluidic components fabricated with PDMS-based composites have been introduced, including a microfluidic mixer, a microheater, a micropump, a microdroplet controller, as well as an all-in-one microfluidic chip.  相似文献   

14.
Hydrogels have several excellent characteristics suitable for biomedical use such as softness, biological inertness and solute permeability. Hence, integrating hydrogels into microfluidic devices is a promising approach for providing additional functions such as biocompatibility and porosity, to microfluidic devices. However, the poor mechanical strength of hydrogels has severely limited device design and fabrication. A tetra-poly(ethylene glycol) (tetra-PEG) hydrogel synthesized recently has high mechanical strength and is expected to overcome such a limitation. In this research, we have comprehensively studied the implementation of tetra-PEG gel into microfluidic device technology. First, the fabrication of tetra-PEG gel/PDMS hybrid microchannels was established by developing a simple and robust bonding technique. Second, some fundamental features of tetra-PEG gel/PDMS hybrid microchannels, particularly fluid flow and mass transfer, were studied. Finally, to demonstrate the unique application of tetra-PEG-gel-integrated microfluidic devices, the generation of patterned chemical modulation with the maximum concentration gradient: 10% per 20 μm in a hydrogel was performed. The techniques developed in this study are expected to provide fundamental and beneficial methods of developing various microfluidic devices for life science and biomedical applications.  相似文献   

15.
In this paper, we demonstrate the possibility to trap and sort labeled cells under flow conditions using a microfluidic device with an integrated flat micro-patterned hard magnetic film. The proposed technique is illustrated using a cell suspension containing a mixture of Jurkat cells and HEK (Human Embryonic Kidney) 293 cells. Prior to sorting experiments, the Jurkat cells were specifically labeled with immunomagnetic nanoparticles, while the HEK 293 cells were unlabeled. Droplet-based experiments demonstrated that the Jurkat cells were attracted to regions of maximum stray field flux density while the HEK 293 cells settled in random positions. When the mixture was passed through a polydimethylsiloxane (PDMS) microfluidic channel containing integrated micromagnets, the labeled Jurkat cells were selectively trapped under fluid flow, while the HEK cells were eluted towards the device outlet. Increasing the flow rate produced a second eluate much enriched in Jurkat cells, as revealed by flow cytometry. The separation efficiency of this biocompatible, compact micro-fluidic separation chamber was compared with that obtained using two commercial magnetic cell separation kits.  相似文献   

16.
Perfused three-dimensional (3D) cultures enable long-term in situ growth and monitoring of 3D organoids making them well-suited for investigating organoid development, growth, and function. One of the limitations of this long-term on-chip perfused 3D culture is unintended and disruptive air bubbles. To overcome this obstacle, we invented an imaging platform that integrates an innovative microfluidic bubble pocket for long-term perfused 3D culture of gastrointestinal (GI) organoids. We successfully applied 3D printing technology to create polymer molds that cast polydimethylsiloxane (PDMS) culture chambers in addition to bubble pockets. Our developed platform traps unintended, or induced, air bubbles in an integrated PDMS pocket chamber, where the bubbles diffuse out across the gas permeable PDMS or an outlet tube. We demonstrated that our robust platform integrated with the novel bubble pocket effectively circumvents the development of bubbles into human and mouse GI organoid cultures during long-term perfused time-course imaging. Our platform with the innovative integrated bubble pocket is ideally suited for studies requiring long-term perfusion monitoring of organ growth and morphogenesis as well as function.  相似文献   

17.
Zhang Z  Zhao P  Xiao G  Watts BR  Xu C 《Biomicrofluidics》2011,5(4):46503-465038
A simple method of irreversibly sealing SU-8 microfluidic channels using PDMS is reported in this paper. The method is based on inducing a chemical reaction between PDMS and SU-8 by first generating amino groups on PDMS surface using N2 plasma treatment, then allowing the amino groups to react with the residual epoxy groups on SU-8 surface at an elevated temperature. The N2 plasma treatment of PDMS can be conducted using an ordinary plasma chamber and high purity N2, while the residual epoxy groups on SU-8 surface can be preserved by post-exposure baking SU-8 at a temperature no higher than 95 °C. The resultant chemical bonding between PDMS and SU-8 using the method create an interface that can withstand a stress that is greater than the bulk strength of PDMS. The bond is permanent and is long-term resistant to water. The method was applied in fabricating SU-8 microfluidi-photonic integrated devices, and the obtained devices were tested to show desirable performance.  相似文献   

18.
Blood viscosity has been considered as one of important biophysical parameters for effectively monitoring variations in physiological and pathological conditions of circulatory disorders. Standard previous methods make it difficult to evaluate variations of blood viscosity under cardiopulmonary bypass procedures or hemodialysis. In this study, we proposed a unique microfluidic device for simultaneously measuring viscosity and flow rate of whole blood circulating in a complex fluidic network including a rat, a reservoir, a pinch valve, and a peristaltic pump. To demonstrate the proposed method, a twin-shaped microfluidic device, which is composed of two half-circular chambers, two side channels with multiple indicating channels, and one bridge channel, was carefully designed. Based on the microfluidic device, three sequential flow controls were applied to identify viscosity and flow rate of blood, with label-free and sensorless detection. The half-circular chamber was employed to achieve mechanical membrane compliance for flow stabilization in the microfluidic device. To quantify the effect of flow stabilization on flow fluctuations, a formula of pulsation index (PI) was analytically derived using a discrete fluidic circuit model. Using the PI formula, the time constant contributed by the half-circular chamber is estimated to be 8 s. Furthermore, flow fluctuations resulting from the peristaltic pumps are completely removed, especially under periodic flow conditions within short periods (T < 10 s). For performance demonstrations, the proposed method was applied to evaluate blood viscosity with respect to varying flow rate conditions [(a) known blood flow rate via a syringe pump, (b) unknown blood flow rate via a peristaltic pump]. As a result, the flow rate and viscosity of blood can be simultaneously measured with satisfactory accuracy. In addition, the proposed method was successfully applied to identify the viscosity of rat blood, which circulates in a complex fluidic network. These observations confirm that the proposed method can be used for simultaneous measurement of viscosity and flow rate of whole blood circulating in the complex fluid network, with sensorless and label-free detection. Furthermore, the proposed method will be used in evaluating variations in the viscosity of human blood during cardiopulmonary bypass procedures or hemodialysis.  相似文献   

19.
A rapid, inexpensive method using alkoxysilanes has been developed to selectively coat the interior of polydimethylsiloxane (PDMS) microfluidic channels with an integral silicaceous layer. This method combines the rapid prototyping capabilities of PDMS with the desirable wetting and electroosmotic properties of glass. The procedure can be carried out on the open faces of PDMS blocks prior to enclosure of the channels, or by flowing the reagents through the preformed channels. Therefore, this methodology allows for high-throughput processing of entire microfluidic devices or selective modification of specific areas of a device. Modification of PDMS with tetraethoxysilane generated a stable surface layer, with enhanced wettability and a more stable electroosmotic flow rate than native PDMS. Modification of PDMS with 3-aminopropyltriethoxysilane generated a surface layer bearing amine functionalities allowing for further chemical derivatization of the PDMS surface.  相似文献   

20.
A versatile method to fabricate a multilayer polydimethylsiloxane (PDMS) device with micropillar arrays within the inner layer is reported. The method includes an inexpensive but repeatable approach for PDMS lamination at high compressive force to achieve high yield of pillar molding and transfer to a temporary carrier. The process also enables micropillar-containing thin films to be used as the inner layer of PDMS devices integrated with polymer membranes. A microfluidic cell culture device was demonstrated which included multiple vertically stacked flow channels and a pillar array serving as a cage for a collagen hydrogel. The functionality of the multilayer device was demonstrated by culturing collagen-embedded fibroblasts under interstitial flow through the three-dimensional scaffold. The fabrication methods described in this paper can find applications in a variety of devices, particularly for organ-on-chip applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号