首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
首先介绍一个有关的常用图形:如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB于D.由相似三角形易得CD2=AD·BD,AC2=AD·AB,BC2=BD·AB.练习1.在正方形ABCD中,AE=1/4AD,E在AD上.G是AB的中点,GF⊥EC,垂足为F.求证:GF2=CF·EF.(提示:连接EG,CG.通过证△AEG(?)△BGC,得  相似文献   

2.
中学数学教材知识的编排是按章节分类的 ,知识点之间缺乏相互联系 .活用所学知识 ,把章节之间的知识相互渗透 ,多角度解答数学问题 ,是学好初中数学的关键 .1 利用三角形面积证明几何题例 :求证等腰三角形底边上任一点与两腰的距离的和等于腰上的高 .已知 :如图 1△ABC中 ,AB =AC ,DE⊥AB ,DF⊥BC ,CG⊥AB .求证 :DE +DF =CG图 1分析 :连结AD ,易知S△ABD =12 AB·DE ,S△ADC =12 AC·DF ,S△ABC=12 AB·CG ,AB·DE +AC·DF =AB·CG ,而AB =AC ,故DE +DF =CG .2 利用辅助圆解答几何题例 :如图 2等腰△ABC…  相似文献   

3.
三角形的面积 :S=底×高 ÷ 2 .应用面积关系图 1求解 ,有时可使解题简章明了 .1 利用面积的不变性解题例 1 如图 1,在Rt△ABC中 ,∠C =90° ,AC =4 ,BC =3,CD ⊥AB于D ,求CD .解析 在Rt△ABC中 ,由勾股定理得 ,AB =5,而S△ABC =12 BC·AC =12 AB·CD ,即BC·AC =AB·CD ,故CD =BC·ACAB =2 .4 .结论 1 直角三角形斜边上的高等于两条直角边的积除以斜边的商 .例 2  (《几何》第二册第 2 4 8页B组第 2题 )如图 2 ,矩形ABCD中 ,AB =a ,BC =b ,M是BC的中点 ,DE ⊥AM ,E是垂足 ,求证DE =2ab4a2 +b2 .解析 根…  相似文献   

4.
C 三角 如图 (1), CD是△ ABC的形形状;延拓高,当点 C在 CD上运动时,易得如下结论: AC2+ BC2=AB2 Rt△ ABC. (1) AC2+ BC2>AB2锐角 △ ABC. (2) AC2+ BC2 AC2=AD· AB或 BC2=BD· AB或 CD2=BD· AD Rt△ ABC.(4) AC2>AD· AB或 BC2>BD· AB或 CD2>BD· AD 锐角△ ABC.(5) AC2 我们称 (1)(2)(3)为勾股式,称 (4)(5)(6)为射影式 .利用勾股式和射影式判断三角形的形状,十分方便 . 例 1、已知三角 解: ∵ 42+ 52>62形三边长为 4、 5、 6, ∴它是锐角三角形 .则此三角形为一一 例 2、…  相似文献   

5.
有些几何题 ,若能仔细观察、把握特征、抓住本质、恰当地构造直角三角形进行转化 ,就会收到化难为易、事半功倍的效果 .1 求边长例 1、如图 1所示 ,在△ABC中 ,AB=4 ,BC=3 ,∠ABC=1 2 0°,求 AC的长 .解 :经过 A作 CB延长线的垂线 ,垂足为 E.因为∠ABC=1 2 0°,故∠ ABE=60°.在 Rt△ ABE中 ,AE=AB· sin60°=4× 3 /2=2 3 ,BE=AB· cos60°=4× 1 /2 =2 .在 Rt△ACE中 ,AC=AE2 CE2=( 2 3 ) 2 52 =3 7.2 求角例 2 如图 2所示 ,在△ ABC中 ,AB=4 ,AC=2 1 ,BC=5,求∠ B的度数 .解 :作 AD⊥ BC于 D.设 BD=x,则 D…  相似文献   

6.
证法 1 如图1,设∠BAD=α,∠ CAD=β(0 <α,β <π2 ) ,过 B作BD⊥ AD交 AC于C,则有cosα=ADAB,cosβ=ADAC.又∵S△ B A C=S△ B A D+S△ D A C,∴ 12 · AB· AC· sin(α+β) =12 AB·AD· sinα+12 AD· AC· sinβ.两边同时除以 12 AB·AC,可得sin(α+β) =ADAC·sinα+ADAB· sinβ=cosβ· sinα+cosα· sinβ.运用诱导公式 ,易证α,β不是锐角时 ,式子仍然成立 .图 2证法 2 如图2 ,设∠BAD=α,∠DAC=β(0 <α,β <π2 ) ,作 BD⊥AD交 AC于 C,作BE⊥ AC于 E,则有 ADAC=cosβ,BDAB=sinα,ADAB=…  相似文献   

7.
如图 1 ,构造腰长为 2 ,顶角为 2 α( 0 <α<π2 )的等腰△ ABC,则△ ABC的面积 S=12 × AB× AC×sin 2α=sin 2α.过 A作 AD⊥ BC于 D,则 D是 BC的中点 ,且∠ BAD=∠CAD=α,则 AD=AB·cosα=2 cosα.又∵△ ABD与△ ACD的面积相等 ,∴△ ABC的面积 S=2· S△ ABD=2× 12× AB× AD×sinα=2 sinαcosα,∴sin2 α=2 sinαcosα.易证 α不是锐角时 ,上式仍然成立 .正弦二倍角公式的构造证法@刘品德$广东省江门市江海中学!529000…  相似文献   

8.
20 0 2年黑龙江省中考试题中有这样一道题 :曙光中学有一块三角形形状的花圃ABC ,现可直接测量到∠A =30°,AC =4 0m ,BC =2 5m .请你求出这块花圃的面积 .图 1解 :如图 1 ,过C作CD⊥AB于D .在Rt△ADC中 ,由∠A =30°,AC =4 0 ,求得CD =2 0 .AD =AC·cos 30° =2 0 3.在Rt△CDB中 ,由CD =2 0 ,BC =2 5,有BD =BC2 -CD2 =1 5.所以 ,S△ABC=12 AB·CD =12 (AD +BD)·CD=( 2 0 0 3+ 1 50 ) (m2 ) .图 2以上解答似乎无懈可击 ,但若仔细审题 ,就会发现 :由题设条件可以作出如图 1的三角形 ,还可以作出如图 2的三角形 ,因而…  相似文献   

9.
题目已知:在△ABC 中,AB=AC,D 是 BC 边上一点.求证:AB~2=AD~2+BD·CD.思路分析1:因为 BD、CD 在同一边上,从而考虑相交弦定理,于是作△ABC 的外接圆进行论证.证法1:作△ABC 的外接圆 O,延长AD 交⊙O于 E,连结 BE(如图1),∵AB=AC,∴∠1=∠E.∴△ABD∽△AEB,∴AB~2=AD·AE=AD·(AD+DE)=AD~2+AD·DE.  相似文献   

10.
有些平面几何 ,本身虽然与面积无关 .若从面积的角度来考虑 ,往往具有思路明快 ,过程简捷 ,现举例如下 .一、用面积证明线段相等例 1 如图 1,在△ A BC中 ,BE⊥ AC于 E,CF⊥AB于 F,且 BE =CF,求证 :AB =A C.证明 :在△ A BC中 ,由三角形面积公式 ,得S△ ABC=12 A B .CF =12 A C .BE∵ BE =CF,∴ AB =AC.图 1图 2二、用面积法证明线段不等例 2 如图 2 ,在△ A BC中 ,BC >A C,AD⊥ BC于D,BE⊥ AC于 E,求证 :BE >A D.证明 :∵ S△ ABC =12 BE .A C =12 AD .BC,∴ BEA O=BCA C,又∵ BC >AC,∴ BE >AD .…  相似文献   

11.
初级中学课本《几何》第二册第85页上有这样一道例题: 命题1 如图1,AD是△ABC的高,AE是△ABC的外接圆直径。求证:AB·AC=AE·AD。本题的证明是极为简单的,只须连结BE,由△ABE∽△ADC即得结论。将命题1的条件稍加改变,则有: 命题2 △ABC中,∠A的平分线交BC于D,交外接圆于E(图2)。则AB·AC=AD·AE。以上两个命题告诉我们:三角形中凡关于高。外接圆直径,内角平分线与两边发生联系的某些命题,均可用它们来解决。例1 如图3,△ABC内接于直径为d的圆。设BC=a,AC=b,那么△ABC的高CD等于多少?  相似文献   

12.
20 0 4年高考数学 (湖北卷 )理科第 19题 :如图 1,在Rt△ABC中 ,已知BC =a ,若长为 2a的线段PQ以点A为中点 ,问PQ与BC的夹角θ取何值时 ,BP·CQ的值最大 ?并求出这个最大值 .1 基本解法本题主要考查向量的概念 ,平面向量的运算法则 ,考查运用向量及函数知识的能力 .解法Ⅰ ∵AB⊥AC ,故AB·AC =0 .∵AP =- AQ ,BP =AP- AB ,CQ =AQ -AC ,∴BP·CQ =(AP -AB)· (AQ -AC)=AP· AQ - AP· AC- AB· AQ +AB·AC=-a2 -AP·AC +AB·AP=-a2 +AP· (AB- AC)=-a2 +12 PQ·BC=-a2 +a2 cosθ .当cosθ=1,即θ =0 (…  相似文献   

13.
平面几何的证明一般都是根据几何公理、定理进行逻辑推理论证 ,似乎与所学的锐角三角函数没有关系。事实上 ,借助于锐角三角函数证明几何题 ,则出奇制胜 ,巧妙之处 ,令人拍手叫绝。现举例如下 :一、求证线段及线段的乘方间的关系图 1例 1.已知 :如图 1,∠BAC=90°,AD⊥ BC,DE⊥ AB,DF⊥AC,垂足分别为 D、E、F,求证 :AB3AC3=BECF(教材第二册 5.4 B组第 3题 )证明 :设∠ C =α,则∠ BDE=∠DAE=α在 Rt△ABC中 ,tgα=ABAC,∴ AB3AC3=tg3α;在 Rt△ BED中 ,BE=DEtgα;在 Rt△ CFD中 ,FC=DFctgα;在 Rt△ AED中 ,tgα…  相似文献   

14.
刘金江 《初中生》2003,(27):24-27
在解直角三角形时,最常用的数学思想是数形结合,即先根据题意画出图形,再借助于图形的直观,分析有关边角关系,最后计算.对于斜三角形和联系实际的问题,转化思想和方程思想在解题中起着重要的作用.一、转化思想.解数学题时,常常要用到转化思想.这就是把陌生的问题转化为我们熟悉的问题来求解.比如,我们可以把斜三角形和四边形问题转化为直角三角形问题来求解.例1如图1,在△ABC中,AB=5,AC=7,∠B=60°,求BC的长.解:过A点作AD⊥BC于D.在Rt△ABD中,AD=AB·sin60°=53√2,BD=AB·cos60°=52.在Rt△ADC中,DC=AC2-AD2√=72-(53√2)2…  相似文献   

15.
原题已知AB=AC,CD⊥AB于点D,BE上AC于点E,BE与CD相交于点O,(1)求证:AD=AE.(2)连接OA、BC,试判断直线OA、BC的位置关系并说明理由.提供的标准答案:(1)证明:如图1中,在△ACD与△ABE中,∵.∠ADC=∠A EB=90°,∠A=∠A,AC=AB,∴△ACD≌△ABE.∴AD=AE.(2)互相垂直;证明连接OA、BC,如图2,在Rt△ADO与Rt△AEO中,  相似文献   

16.
在1993年西宁市中考数学试卷中,有这样一道题:已知在如图Rt△ABC中,∠BAC=90°,AD⊥BC,AE平分∠BAC。若AB=15cm,BD=9cm。求:(1)BC的长;(2)AC的长;(3)  相似文献   

17.
神秘的“黄金分割”   总被引:1,自引:0,他引:1  
一、“黄金分割”的由来很久以前古希腊学者欧多克斯(公元前 4 0 8~ 335)最早提出 :能否把一条线段分成两段 ,使其中较长的线段是原线段与较短线段的比例中项 ?人们经过反复的实践探索解决了这一问题。如图所示 ,取线段 AB,作CB⊥ AB使 BC=12 · AB,连 AC在 AC上取 CD =BC,在 AB上取 AE=AD,则 AE2 =AB· BE,下面用勾股定理证明这一结论。证明 :∵AC2 =AB2 BC2  ( AD DC) 2 =AB2 BC2∵ AD =AE  BC=12 · AB∴有 AE2 AE·AB- AB2 =0 ( * )∴ AE2 =AB ( AB- A E)=AB· BE人们把这个比称为“中外比”,后来…  相似文献   

18.
为提高综合运用勾股定理及其逆定理解计算题和证明题的能力,现举数例说明如下:一、求长度例1 如图1,在△ABC中,AB=13,BD=5,AD=12,AC=15,求BC? 解:∵AD2 BD2=122 52=132=AB2,由勾股定理的逆定理知:∠ADB=90°,从而AD⊥BC,在Rt△ADC中,由勾股定理得:DC2=AC2-AD2=152-122=81,∴DC=9,从而BC=  相似文献   

19.
初中几何中等积式的证明是一个难点,其主要方法是将等积式化为比例式.现举几例,供读者参考. 例1已知:如图1,△ABC中,AD是∠BAC的平分线,∠BAC一1200,求证:AB·AC=AD·(AB+AC). 分析从所证结论中的四项AB、  相似文献   

20.
正方形是我们最熟悉的几何图形之一·一些几何图形,若能根据题目所给条件,恰当地添补成正方形,则可收到事半功倍的解题效果·下面略举几例·例1△ABC中,AB=BC,∠ABC=90°,E在AB上,BM⊥CE交AC于M,且AE∶AB=999∶解29:91·求AM∶MC·如图1,以AC为对角线补出正方形ABCD,延长BM交AD于F·因为∠EBC=90°,BM⊥CE,所以∠1=∠2·又AB=BC,∠BAF=∠CBE=90°,所以△BAF≌△CBE·所以AF=BE·因为AF∥BC,所以MAMC=BAFC=BABE=ABA-BAE=1-9992991=21999912,故例2AM∶如M图C=2,1E99是2正∶29方91·形ABCD的对角线AC…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号