首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
证法 1 如图1,设∠BAD=α,∠ CAD=β(0 <α,β <π2 ) ,过 B作BD⊥ AD交 AC于C,则有cosα=ADAB,cosβ=ADAC.又∵S△ B A C=S△ B A D+S△ D A C,∴ 12 · AB· AC· sin(α+β) =12 AB·AD· sinα+12 AD· AC· sinβ.两边同时除以 12 AB·AC,可得sin(α+β) =ADAC·sinα+ADAB· sinβ=cosβ· sinα+cosα· sinβ.运用诱导公式 ,易证α,β不是锐角时 ,式子仍然成立 .图 2证法 2 如图2 ,设∠BAD=α,∠DAC=β(0 <α,β <π2 ) ,作 BD⊥AD交 AC于 C,作BE⊥ AC于 E,则有 ADAC=cosβ,BDAB=sinα,ADAB=…  相似文献   

2.
有些几何题 ,若能仔细观察、把握特征、抓住本质、恰当地构造直角三角形进行转化 ,就会收到化难为易、事半功倍的效果 .1 求边长例 1、如图 1所示 ,在△ABC中 ,AB=4 ,BC=3 ,∠ABC=1 2 0°,求 AC的长 .解 :经过 A作 CB延长线的垂线 ,垂足为 E.因为∠ABC=1 2 0°,故∠ ABE=60°.在 Rt△ ABE中 ,AE=AB· sin60°=4× 3 /2=2 3 ,BE=AB· cos60°=4× 1 /2 =2 .在 Rt△ACE中 ,AC=AE2 CE2=( 2 3 ) 2 52 =3 7.2 求角例 2 如图 2所示 ,在△ ABC中 ,AB=4 ,AC=2 1 ,BC=5,求∠ B的度数 .解 :作 AD⊥ BC于 D.设 BD=x,则 D…  相似文献   

3.
一、应用特殊角的三角函数例 1 在△ABC中 ,∠A=1 2 0°,AB=3,AC=2 ,求 BC和 sin B。解 :过 C作 CD⊥ BA,交 BA的延长线于点 D,如图 1。∵∠ BAC=1 2 0°,∠ D=90°,∴∠ DAC=60°,∠ ACD=30°。在 Rt△ ACD中 ,AD=12 AC=1 ,CD=AC· sin∠DAC=2×sin60°=3。在 Rt△ BCD中 ,BD=BA AD=4,BC=BD2 CD2 =42 (3 ) 2 =1 9,∴ sin B=CDBC=31 9=571 9。例 2 已知 :△ ABC的边 AC=2 ,∠ A=45°,cos A、cos B是方程 4x2 - 2 (1 2 ) x m=0的二根 ,求 :(1 )∠ B的度数 ;(2 )边 AB的长。解 :(1 )∵∠ A=45°,∴ cos …  相似文献   

4.
中学数学教材知识的编排是按章节分类的 ,知识点之间缺乏相互联系 .活用所学知识 ,把章节之间的知识相互渗透 ,多角度解答数学问题 ,是学好初中数学的关键 .1 利用三角形面积证明几何题例 :求证等腰三角形底边上任一点与两腰的距离的和等于腰上的高 .已知 :如图 1△ABC中 ,AB =AC ,DE⊥AB ,DF⊥BC ,CG⊥AB .求证 :DE +DF =CG图 1分析 :连结AD ,易知S△ABD =12 AB·DE ,S△ADC =12 AC·DF ,S△ABC=12 AB·CG ,AB·DE +AC·DF =AB·CG ,而AB =AC ,故DE +DF =CG .2 利用辅助圆解答几何题例 :如图 2等腰△ABC…  相似文献   

5.
探索:将一个三角形沿着一条中线剪开,得两个面积相等的三角形.如图1,沿中线AD将△ABC剪开,得△ABD和△ACD,有S△ABD=S△ACD.再研究一下这两个三角形的边与角,发现AD=AD,BD=CD,∠ADB+∠ADC=180°.猜想:如果两个三角形的边与角之间满足上述条件,这两个三角形面积相等吗?如图2,在△ABC和△A'B'C中,BC=B'C'=a,AC=A'C'=b,∠ACB+∠A'C'B'=180°.我们试将这两个三角形拼合,使A'C'与AC重合.∵∠ACB+∠A'C'B'=180°,∴B'在BC的延长线上.又∵BC=B'C',∴C是△ABB'的边BB'的中点.∴S△ABC=S△A'B'C'.(等底等高)这说明…  相似文献   

6.
刘金江 《初中生》2003,(27):24-27
在解直角三角形时,最常用的数学思想是数形结合,即先根据题意画出图形,再借助于图形的直观,分析有关边角关系,最后计算.对于斜三角形和联系实际的问题,转化思想和方程思想在解题中起着重要的作用.一、转化思想.解数学题时,常常要用到转化思想.这就是把陌生的问题转化为我们熟悉的问题来求解.比如,我们可以把斜三角形和四边形问题转化为直角三角形问题来求解.例1如图1,在△ABC中,AB=5,AC=7,∠B=60°,求BC的长.解:过A点作AD⊥BC于D.在Rt△ABD中,AD=AB·sin60°=53√2,BD=AB·cos60°=52.在Rt△ADC中,DC=AC2-AD2√=72-(53√2)2…  相似文献   

7.
三角形的面积 :S=底×高 ÷ 2 .应用面积关系图 1求解 ,有时可使解题简章明了 .1 利用面积的不变性解题例 1 如图 1,在Rt△ABC中 ,∠C =90° ,AC =4 ,BC =3,CD ⊥AB于D ,求CD .解析 在Rt△ABC中 ,由勾股定理得 ,AB =5,而S△ABC =12 BC·AC =12 AB·CD ,即BC·AC =AB·CD ,故CD =BC·ACAB =2 .4 .结论 1 直角三角形斜边上的高等于两条直角边的积除以斜边的商 .例 2  (《几何》第二册第 2 4 8页B组第 2题 )如图 2 ,矩形ABCD中 ,AB =a ,BC =b ,M是BC的中点 ,DE ⊥AM ,E是垂足 ,求证DE =2ab4a2 +b2 .解析 根…  相似文献   

8.
有些平面几何 ,本身虽然与面积无关 .若从面积的角度来考虑 ,往往具有思路明快 ,过程简捷 ,现举例如下 .一、用面积证明线段相等例 1 如图 1,在△ A BC中 ,BE⊥ AC于 E,CF⊥AB于 F,且 BE =CF,求证 :AB =A C.证明 :在△ A BC中 ,由三角形面积公式 ,得S△ ABC=12 A B .CF =12 A C .BE∵ BE =CF,∴ AB =AC.图 1图 2二、用面积法证明线段不等例 2 如图 2 ,在△ A BC中 ,BC >A C,AD⊥ BC于D,BE⊥ AC于 E,求证 :BE >A D.证明 :∵ S△ ABC =12 BE .A C =12 AD .BC,∴ BEA O=BCA C,又∵ BC >AC,∴ BE >AD .…  相似文献   

9.
20 0 2年黑龙江省中考试题中有这样一道题 :曙光中学有一块三角形形状的花圃ABC ,现可直接测量到∠A =30°,AC =4 0m ,BC =2 5m .请你求出这块花圃的面积 .图 1解 :如图 1 ,过C作CD⊥AB于D .在Rt△ADC中 ,由∠A =30°,AC =4 0 ,求得CD =2 0 .AD =AC·cos 30° =2 0 3.在Rt△CDB中 ,由CD =2 0 ,BC =2 5,有BD =BC2 -CD2 =1 5.所以 ,S△ABC=12 AB·CD =12 (AD +BD)·CD=( 2 0 0 3+ 1 50 ) (m2 ) .图 2以上解答似乎无懈可击 ,但若仔细审题 ,就会发现 :由题设条件可以作出如图 1的三角形 ,还可以作出如图 2的三角形 ,因而…  相似文献   

10.
几何面积计算题是数学竞赛中的热点问题之一 .由于初一年级同学掌握的几何知识较少 ,解这类问题的难度较大 .下面我们先给出关于等高三角形或共底三角形面积比的两个性质 ,我们将看到 ,恰当地运用这两个性质建立方程或方程组 ,这类问题也不难解决 .性质 1 如图 1,△ ABD、△ ACD与△ ABC存在公共高 AH ,则由S△ =12 ×底×高 ,有S△ AB D∶ S△ ACD =BD∶ CD;S△ AB D∶ S△ AB C=BD∶ BC;S△ AC D∶ S△ A BC =CD∶ BC.这个性质可简述为等高三角形面积比等于底边的比 .图 1图 2性质 2 如图 2 ,在△ ABC中 ,点 D为 …  相似文献   

11.
1 命题若 AD为 Rt△ ABC的斜边 BC上的高 ,则 1AD2 =1AB2 1AC2 .图 1证明 如图1 ,因 AB⊥ AC,AD⊥ BC,故 AB· AC= AD· BC,于是  1AD2 =BC2AB2 · AC2 =AB2 AC2AB2 · AC2 =1AB2 1AC2 .2 应用例 1 在 Rt△ ABC中 ,∠A=90°,以CB,CA,AB为轴将△ ABC旋转一周所得几何体的体积分别记为 Va,Vb,Vc,试证明 :1V2a= 1V2b 1V2c.证明 如图 1 ,有Vb=13πAB2·AC,Vc=13πAC2 · AB,Va=13πAD2·BD 13πAD2·DC  =13πAD2 · BC=13πAD· AB·AC.故  1V2b 1V2c=1( 13πAB· AC) 2( 1AB2 1…  相似文献   

12.
例1如图1所示,某村欲修建一横断面为等腰梯形的水渠,为降低成本,必须尽量减少水与水渠壁的接触面.若水渠横断面面积设计为定值m,渠深8米,则水渠壁的倾斜角α应为多少时,方能使修建的成本最低?解作CE⊥AD,垂足为E,设水渠横断面周长为l,则l=BC+2CD.∵ED=8cotα,CD=8sinα,且8(2BC+2ED)2=m,∴BC=m8-8cotα,∴l=m8+8×2-cosαsinα(0°<α<90°).令u=2-cosαsinα(u>1),则u·sinα+cosα=2,∴sin(α+φ)=21+u2姨(tanφ=1u),故只需求sin(α+φ)有最大值时所对应的u即可.∵0°<α+φ<180°,∴当且仅当α+φ=90°时,有21+u2姨=1,∴u=3姨,此…  相似文献   

13.
对于某些三角问题 ,若能合理地构造向量 ,利用向量来解 ,往往可使问题得到快捷方便地解决 ,下面举例说明 .一、求角度【例 1】 若α、β∈ ( 0 ,2 ) ,求满足cosα+cosβ-cos(α + β) =32 的α ,β的值 .解 :原等式化为( 1 -cosβ)cosα+sinβsinα =32 -cosβ ①构造向量a =( 1 -cosβ ,sinβ) ,b =(cosα ,sinα) ,则a·b =( 1 -cosβ)cosα+sinβsinα=32 -cosβ ,|a|·|b|= ( 1 -cosβ) 2 +sin2 β· cos2 α+sin2 α= 2 -2cosβ因 (a·b) 2 ≤|a|2 ·|b|2 ,于是有 ( 32 -cosβ) 2 ≤ 2 -2cosβ整理得 (cosβ-12 ) 2 ≤ 0 ,∴c…  相似文献   

14.
一、利用定义求角例1已知四面体ABCD,AC⊥BD,且△ABC的面积为15,△ACD的面积为9.若AC=6,BD=7.求二面角B-AC-D的大小.解如图1,作BE⊥AC于E,连DE.∵AC⊥BD,AC⊥BE,∴AC⊥平面BDE,AC⊥DE.∴∠BED是二面角B-AC-D的平面角.∵S△ABC=15,S△ACD=9,AC=6,∴15=12×6×BE,则BE=5;9=21×6×DE,则DE=3.在△BDE中,由余弦定理可得cos∠BED=-21,故∠BED=120°.二、利用垂线求角例2如图2,正方体ABCD-A1B1C1D1的棱长为1,P是AD的中点,求二面角A-BD1-P的大小.解过P作BD1及AD1的垂线,垂足分别是E,F,连EF.由于AB⊥平…  相似文献   

15.
一、填空题 1.a是第三象限的角,且6sin~2α sin α·cos α-2cos~2α=0,则sin 2α cos 2α的值是____。 2.正四面体ABCD的棱长为1,点G是底面△ABC的重心,点M在线段DG上,且使得∠AMB=90°。则DM的长为____。  相似文献   

16.
一、填空题1 .sin30°· cos30°=;1tg45° tg60°=。2 .在△ ABC中 ,∠ ACB=Rt∠ ,AC=5,BC=1 2 ,则 sin B= ;tg A=。3.sin2 3 2° cos2 3 2°=;cos2 0°- cos50°填 (>0或 <0 )。4.方程 x2 x=0的解是 ;方程 x2 2 x- 1 =0的解是。5.已知方程 2 x2 1 3x k=0 ,如果一个根是- 3,则另一个根是 ,k=。6.不解方程 ,判断方程 5x2 - 2 x=- 1根的情况 :因为△ ;所以方程。   7.如图 ,△ABC中 ,DE∥BC,若 ADDB=32 ,则△ ADE与△ ABC的周长比为 ;S△ A DE∶ S梯形△ DBCE=。   8.如图 ,M是 AB的中点 ,AB=1 2 ,AC=9,且∠ ANM=…  相似文献   

17.
20 0 4年高考数学 (湖北卷 )理科第 19题 :如图 1,在Rt△ABC中 ,已知BC =a ,若长为 2a的线段PQ以点A为中点 ,问PQ与BC的夹角θ取何值时 ,BP·CQ的值最大 ?并求出这个最大值 .1 基本解法本题主要考查向量的概念 ,平面向量的运算法则 ,考查运用向量及函数知识的能力 .解法Ⅰ ∵AB⊥AC ,故AB·AC =0 .∵AP =- AQ ,BP =AP- AB ,CQ =AQ -AC ,∴BP·CQ =(AP -AB)· (AQ -AC)=AP· AQ - AP· AC- AB· AQ +AB·AC=-a2 -AP·AC +AB·AP=-a2 +AP· (AB- AC)=-a2 +12 PQ·BC=-a2 +a2 cosθ .当cosθ=1,即θ =0 (…  相似文献   

18.
题目已知:在△ABC 中,AB=AC,D 是 BC 边上一点.求证:AB~2=AD~2+BD·CD.思路分析1:因为 BD、CD 在同一边上,从而考虑相交弦定理,于是作△ABC 的外接圆进行论证.证法1:作△ABC 的外接圆 O,延长AD 交⊙O于 E,连结 BE(如图1),∵AB=AC,∴∠1=∠E.∴△ABD∽△AEB,∴AB~2=AD·AE=AD·(AD+DE)=AD~2+AD·DE.  相似文献   

19.
应用面积射影公式求二面角的大小 ,对于 (一 )平面角虽可作出 ,但比较困难 ,计算繁琐 ;(二 )平面角无法作出 ,或很难下手 .如 :1.直三棱柱ABC-A1 B1 C1 中 ,∠BAC=90° ,AB =BB1 =1,直线B1 C与平面ABC成30°角 ,求二面角B -B1 C -A的余弦值 .解 :易知∠BCB1 =30° ,作AD⊥BC于D ,则AD ⊥面BCB1 ,△AB1 C在面BCB1 上射影是△DCB1 .设二面角为θ ,cosθ =S△DCB1S△AB1C,其中AC =2 ,AB1 =2 ,S△AB1C =1,B1 C =2 ,CD =2 33,S△DCB1=12 B1 C·CD·sin30°=33,即二面角的余弦值为 33.1题图 2题图2 .正方体中 ,求二…  相似文献   

20.
近日偶尔翻看听课笔记,当翻到小学毕业班求阴影部分的复习课时,眼前仿佛又闪现那一堂精彩的教学课。老师出了一道题:如图已知任意△ABC的面积为500平方厘米,∠B=45°,AD⊥BC于D,BDE为扇形,BD∶CD=2∶3,求S阴影面积。学生们大都采用:因为BD∶CD=2∶3,所以S△ABD∶S△ACD=2∶3500÷5×2=200(平方厘米)摇就是△ABD的面积。而阴影部分的面积为S△ABD-18S圆(BD为半径),因为12BD×AD=200平方厘米,所以BD×AD=400(平方厘米),而∠B=45°,所以BD=AD,即圆的R2=400(平方厘米)。所以S阴=200-3.14×400…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号