首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human cerebral cortex displays various dynamics patterns under different states, however the mechanism how such diverse patterns can be supported by the underlying brain network is still not well understood. Human brain has a unique network structure with different regions of interesting to perform cognitive tasks. Using coupled neural mass oscillators on human cortical network and paying attention to both global and local regions, we observe a new feature of chimera states with multiple spatial scales and a positive correlation between the synchronization preference of local region and the degree of symmetry of the connectivity of the region in the network. Further, we use the concept of effective symmetry in the network to build structural and dynamical hierarchical trees and find close matching between them. These results help to explain the multiple brain rhythms observed in experiments and suggest a generic principle for complex brain network as a structure substrate to support diverse functional patterns.  相似文献   

2.
杨志刚 《大众科技》2013,(2):4-6,79
介绍现阶段的标准秒脉冲的产生及同步原理,分析了相位调整原理。针对常用相位调整技术精度不高的缺点,提出了一种基于AD9852的精密相位微调技术,给出了硬件和软件实现方案。通过理论分析,采用这种方法的相位调整精度理论优于10ps量级。  相似文献   

3.
In this paper, an adaptive feedback controller is designed to achieve complete synchronization of unidirectionally coupled delayed neural networks with stochastic perturbation. LaSalle-type invariance principle for stochastic differential delay equations is employed to investigate the globally almost surely asymptotical stability of the error dynamical system. An example and numerical simulation are given to demonstrate the effectiveness of the theory results.  相似文献   

4.
The present study investigates the fixed-time synchronization issue for delayed complex networks under intermittent pinning control. Different from some existing semi-intermittent controllers for finite/fixed-time synchronization, our pinning controller is designed in a complete intermittent way. In order to address the encountered theoretical analysis difficulties, a new differential inequality lemma is developed, which is suitable for the fixed-time synchronization studies under periodic or aperiodic complete intermittent control. Then, by using Lyapunov theory and pinning control approach, sufficient conditions are proposed which can guarantee the aperiodically completely intermittent-controlled delayed complex networks realizing fixed-time pinning synchronization. Moreover, the settling time is explicitly estimated, which is irrelevant to the initial values of our network systems. Additionally, as a special case, the scenario of periodic complete intermittent control is also discussed. At last, some simulation examples are utilized to confirm our theoretical outcomes.  相似文献   

5.
This paper investigates the synchronization problems for the multiplex networks with both inter-layer and intra-layer couplings subject to the stochastic perturbations. In particular, the topologies of all layers are not the same, so the model can represent a class of multiplex networks. To synchronize the multiplex networks onto the trajectory of a virtual leader, a pinning adaptive protocol is proposed and some pinning criteria are derived for guaranteeing complete synchronization. Furthermore, when the results are extended to the systems with time delays, the pinning adaptive strategy is still proved to be effective. Finally, a two-layer network and a three-layer network are selected for numerical simulations to illustrate the theoretical results.  相似文献   

6.
This paper analyzes synchronization in finite time for two types of coupled delayed Cohen–Grossberg neural networks (CDCGNNs). In the first type, linearly coupled Cohen–Grossberg neural networks with and without coupling delays are considered, respectively. In the second type, nonlinearly coupled Cohen–Grossberg neural networks both with and without coupling delays are discussed. By designing suitable controllers and using some inequality techniques, several criteria ensuring finite-time synchronization of the CDCGNNs with linear coupling and nonlinear coupling are derived, respectively. Moreover, the settling times of synchronization in finite time for the considered networks are also predicted. In the end, the availability for the acquired finite-time synchronization conditions is confirmed by two selected numerical examples.  相似文献   

7.
Multiplex networks involve different types of synchronization due to their complex spatial structure. How to control multiplex networks to achieve different types of synchronization is an interesting topic. This paper considers the fixed-time synchronization of multiplex networks under sliding mode control (SMC). Firstly, for realizing three types of synchronization of multiplex networks in a fixed time, a unified sliding mode surface (SMS) is established. After that, based on the theory of SMC, a sliding mode controller (SMCr) which is more intelligent and has a simpler form than those in the existing literature is put forward for multiplex networks. It can not only guarantee the emergence of sliding mode motion, but also can realize three different kinds of synchronization by adjusting some parameters or even one parameter of the controller. Based on some theories of fixed-time stability, this paper deduces several sufficient conditions for the trajectories of the system to reach the preset SMS in a fixed time, and derives some sufficient conditions for multiplex networks to realize three different types of fixed-time synchronization. At the same time, the settling time which can reveal what factors determine the fixed-time synchronization in multiplex networks is obtained. Finally, in numerical simulations, different chaotic systems are set for each layer of multiplex networks to represent the nodes of different layers, which can prove that the theoretical results are practical and effective.  相似文献   

8.
Projective synchronization is a type of chaos synchronization where the response system states are scaled replicas of the drive system states. This paper deals with the propagation of projective synchronization in a series connection of N chaotic discrete-time drive systems and N response systems. By exploiting an observer-based approach, the paper demonstrates that dead-beat projective synchronization (i.e., exact synchronization in finite time for any scaling factor) is achieved between the nth drive and nth response systems. In particular, it is shown that projective synchronization starts from the innermost (Nth) drive-response system pair and propagates toward the outermost (first) drive-response system pair. Only a single scalar synchronizing signal connects the cascaded drive and response systems. Finally, an example illustrates the propagation of different types of chaos synchronization in a series connection consisting of a Gingerbreadman map, a third order hyperchaotic Henon map and a Lozi map.  相似文献   

9.
谢磊  马士华  桂华明  黄培 《科研管理》2012,33(11):96-104
在企业调研、文献研究、专家访谈的基础上,提出供应物流协同理论,不仅注重多个供应商与下游制造商的协同,同时考虑各个供应商之间相互配合,共同满足下游制造商的需求。设计供应物流协同量表,分为供应商与制造商协同、供应商之间协同、物流服务能力三个维度。提出供应物流协同、供应链敏捷性、供应链企业绩效之间的关系模型。与"中国制造业信息化门户网站e-works"合作发放问卷收集数据,通过统计分析验证量表的信度与效度,并且实证分析供应物流协同对供应链敏捷性、供应链企业绩效的直接和间接效应。  相似文献   

10.
This paper deals with the synchronization control of power complex networks with switching parameters. In the meantime, the node state constraints are considered during the synchronization process. Admittedly, synchronization problem encountered in power complex networks is becoming progressively important due to the increasing connection and disconnection operations resulting from sustainable energy and controllable load. Hereon, the network model considering switching parameters of each node is established to describe the topology variation of power systems that may be confronted in practical terms. Then, by utilizing the adaptive backstepping technique with a barrier Lyapunov function (BLF), a novel synchronization controller is constructed recursively which accomplishes the nodes full states tracking within the predefined transient behavior. Owing to the characteristic of BLF, the designed controller as well as its adaptive law could guarantee both the constrained state of each node restricted by a prescribed range and the synchronization performance. Meanwhile, the bounded output of the system could track the desired trajectory. Finally, scenario simulations are performed to demonstrate the effectiveness and superiority of the proposed method.  相似文献   

11.
12.
Links in most real networks often change over time. Such temporality of links encodes the ordering and causality of interactions between nodes and has a profound effect on network dynamics and function. Empirical evidence has shown that the temporal nature of links in many real-world networks is not random. Nonetheless, it is challenging to predict temporal link patterns while considering the entanglement between topological and temporal link patterns. Here, we propose an entropy-rate-based framework, based on combined topological–temporal regularities, for quantifying the predictability of any temporal network. We apply our framework on various model networks, demonstrating that it indeed captures the intrinsic topological–temporal regularities whereas previous methods considered only temporal aspects. We also apply our framework on 18 real networks of different types and determine their predictability. Interestingly, we find that, for most real temporal networks, despite the greater complexity of predictability brought by the increase in dimension, the combined topological–temporal predictability is higher than the temporal predictability. Our results demonstrate the necessity for incorporating both temporal and topological aspects of networks in order to improve predictions of dynamical processes.  相似文献   

13.
In this paper, the synchronization problem is studied for a class of stochastic discrete-time complex networks with partial mixed impulsive effects. The involving impulsive effects, called partial mixed impulses, can be regarded as local and time-varying impulses, which means that impulses are not only injected into a fraction of nodes in networks but also contain synchronizing and desynchronizing impulses at the same time. In order to handle this case, several mathematical techniques are proposed to tackle mixed impulsive effects in discrete-time dynamical systems. Based on the variation of parameters formula, several sufficient criteria are derived to ensure that synchronization of the addressed networks can be achieved in mean square. The obtained criteria not only rely on the strengths of mixed impulses and the impulsive intervals, but also can reduce conservativeness. Finally, a numerical example is presented to show the effectiveness of our results for neural networks.  相似文献   

14.
15.
《Journal of The Franklin Institute》2022,359(18):10558-10577
In this article, a secure exponential synchronization problem is studied for multiplex Cohen-Grossberg neural networks under stochastic deception attacks. In order to resist the malicious attack from attackers modifying the data in transmission module under a certain probability, an attack resistant controller, which has the ability to automatically adjust its own parameters according to external attacks, is designed for each Cohen-Grossberg neural subnet. An exponential adaptive quantitative controlling algorithm is proposed to synchronize Cohen-Grossberg neural network state, and a sufficient criterion is established to realize the synchronization error tends to zero under malicious attacks. Moreover, synchronization mode we study is the synchronization among Cohen-Grossberg neural subnets in multiplex networks. An example is presented to testify the validity of proposed theoretical framework.  相似文献   

16.
In this paper, we concern the finite-time synchronization problem for delayed dynamical networks via aperiodically intermittent control. Compared with some correspondingly previous results, the intermittent control can be aperiodic which is more general. Moreover, by establishing a new differential inequality and constructing Lyapunov function, several useful criteria are derived analytically to realize finite-time synchronization for delay complex networks. Additionally, as a special case, some sufficient conditions ensuring the finite-time synchronization for a class of coupled neural network are obtained. It is worth noting that the convergence time is carefully discussed and does not depend on control widths or rest widths for the proposed aperiodically intermittent control. Finally, a numerical example is given to demonstrate the validness of the proposed scheme.  相似文献   

17.
In this paper, the finite-time synchronization problem of complex dynamic networks with time delay is studied via aperiodically intermittent control. By compared with the existed results concerning aperiodically intermittent control, some new results are obtained to guarantee the synchronization of networks in a finite time. Especially, a new lemma is proposed to reduce the convergence time. In addition, based on aperiodically intermittent control scheme, the essential condition ensuring finite-time synchronization of dynamic networks is also obtained, and the convergence time is closely related to the topological structure of networks and the maximum ratio of the rest width to the aperiodic time span. Finally, a numerical example is provided to verify the validness of the proposed theoretical results.  相似文献   

18.
The generalized lag synchronization of multiple weighted complex dynamical networks with fixed and adaptive couplings is investigated in this paper, respectively. By designing appropriate controller, several synchronization criteria are presented for multiple weighted complex dynamical networks with and without time delay based on the selected Lyapunov functional and inequality techniques. Moreover, an adaptive scheme to update the coupling weights is also developed for ensuring the generalized lag synchronization of multiple weighted complex dynamical networks with and without time delay. Finally, two numerical examples are provided in order to validate effectiveness of the proposed generalized lag synchronization criteria.  相似文献   

19.
This paper focuses on the synchronization of fractional-order complex-valued neural networks (FOCVNNs) with reaction–diffusion terms in finite-time interval. Different from the existing complex-valued neural networks (CVNNs), the reaction–diffusion phenomena and fractional derivative are first considered into the system, meanwhile, the parameter switching (the system parameters will switch with the state) is considered, which makes the presented model more comprehensive. By choosing an appropriate Lyapunov function, the driver and response systems achieve Mittag-Leffler synchronization under a suitable controller. In addition, based on the fractional calculus theorem and the basic inequality methods, a criterion of synchronization for the error system in finite-time interval is derived and the upper bound of the corresponding finite synchronization time can be obtained. Finally, two examples are provided, one is a numerical example to explain the effectiveness of the main results, and the other shows that the results of this paper can be applied to image encryption for any size with high-security coefficient.  相似文献   

20.
Noetica is a tool for structuring knowledge about concepts and the relationships between them. It differs from typical information systems in that the knowledge it represents is abstract, highly connected and includes meta-knowledge (knowledge about knowledge). Noetica represents knowledge using a strongly-typed semantic network. By providing a rich type system it is possible to represent conceptual information using formalised structures. A class hierarchy provides a basic classification for all objects. This allows for a consistency of representation that is not often found in “free” semantic networks and gives the ability to easily extend a knowledge model while retaining its semantics. We also provide visualisation and query tools for this data model. Visualisation can be used to explore complete sets of link-classes, show paths while navigating through the database, or visualise the results of queries. Noetica supports goal-directed queries (a series of user-supplied goals that the system attempts to satisfy in sequence) and path-finding queries (where the system find relationships between objects in the database by following links).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号