首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We employed direct-current electric fields (dcEFs) to modulate the chemotaxis of lung cancer cells in a microfluidic cell culture device that incorporates both stable concentration gradients and dcEFs. We found that the chemotaxis induced by a 0.5 μM/mm concentration gradient of epidermal growth factor can be nearly compensated by a 360 mV/mm dcEF. When the effect of chemical stimulation was balanced by the electrical drive, the cells migrated randomly, and the path lengths were largely reduced. We also demonstrated electrically modulated chemotaxis of two types of lung cancer cells with opposite directions of electrotaxis in this device.  相似文献   

2.
In this paper, we present an on-chip hand-powered membrane pump using a robust patient-to-chip syringe interface. This approach enables safe sample collection, sample containment, integrated sharps disposal, high sample volume capacity, and controlled downstream flow with no electrical power requirements. Sample is manually injected into the device via a syringe and needle. The membrane pump inflates upon injection and subsequently deflates, delivering fluid to downstream components in a controlled manner. The device is fabricated from poly(methyl methacrylate) (PMMA) and silicone, using CO2 laser micromachining, with a total material cost of ∼0.20 USD/device. We experimentally demonstrate pump performance for both deionized (DI) water and undiluted, anticoagulated mouse whole blood, and characterize the behavior with reference to a resistor-capacitor electrical circuit analogy. Downstream output of the membrane pump is regulated, and scaled, by connecting multiple pumps in parallel. In contrast to existing on-chip pumping mechanisms that typically have low volume capacity (∼5 μL) and sample volume throughput (∼1–10 μl/min), the membrane pump offers high volume capacity (up to 240 μl) and sample volume throughput (up to 125 μl/min).  相似文献   

3.
Thermotaxis has been demonstrated to be an important criterion for sperm evaluation, yet clinical assessment of thermotaxis capacity is currently lacking. In this article, the on-chip thermotaxis evaluation of human sperm is presented for the first time using an interfacial valve-facilitated microfluidic device. The temperature gradient was established and accurately controlled by an external temperature gradient control system. The temperature gradient responsive sperm population was enriched into one of the branch channels with higher temperature setting and the non-responsive ones were evenly distributed into the two branch channels. We employed air-liquid interfacial valves to ensure stable isolation of the two branches, facilitating convenient manipulation of the entrapped sperm. With this device, thermotactic responses were observed in 5.7%-10.6% of the motile sperm moving through four temperature ranges (34.0-35.3 °C, 35.0-36.3 °C, 36.0-37.3 °C, and 37.0-38.3 °C, respectively). In conclusion, we have developed a new method for high throughput clinical evaluation of sperm thermotaxis and this method may allow other researchers to derive better IVF procedure.  相似文献   

4.
We report a 3D microfluidic device with 32 detection channels and 64 sheath flow channels and embedded microball lens array for high throughput multicolor fluorescence detection. A throughput of 358 400 cells/s has been accomplished. This device is realized by utilizing solid immersion micro ball lens arrays for high sensitivity and parallel fluorescence detection. High refractive index micro ball lenses (n = 2.1) are embedded underneath PDMS channels close to cell detection zones in channels. This design permits patterning high N.A. micro ball lenses in a compact fashion for parallel fluorescence detection on a small footprint device. This device also utilizes 3D microfluidic fabrication to address fluid routing issues in two-dimensional parallel sheath focusing and allows simultaneous pumping of 32 sample channels and 64 sheath flow channels with only two inlets.  相似文献   

5.
An electro-osmosis (EOS) diode pumping platform capable of culturing cells in fluidic cellular micro-environments particularly at low volume flow rates has been developed. Diode pumps have been shown to be a viable alternative to mechanically driven pumps. Typically electrokinetic micro-pumps were limited to low-concentration solutions (≤10 mM). In our approach, surface mount diodes were embedded along the sidewalls of a microchannel to rectify externally applied alternating current into pulsed direct current power across the diodes in order to generate EOS flows. This approach has for the first time generated flows at ultra-low flow rates (from 2.0 nl/s to 12.3 nl/s) in aqueous solutions with concentrations greater than 100 mM. The range of flow was generated by changing the electric field strength applied to the diodes from 0.5 Vpp/cm to 10 Vpp/cm. Embedding an additional diode on the upper surface of the enclosed microchannel increased flow rates further. We characterized the diode pump-driven fluidics in terms of intensities and frequencies of electric inputs, pH values of solutions, and solution types. As part of this study, we found that the growth of A549 human lung cancer cells was positively affected in the microfluidic diode pumping system. Though the chemical reaction compromised the fluidic control overtime, the system could be maintained fully functional over a long time if the solution was changed every hour. In conclusion, the advantage of miniature size and ability to accurately control fluids at ultra-low volume flow rates can make this diode pumping system attractive to lab-on-a-chip applications and biomedical engineering in vitro studies.  相似文献   

6.
Spatially varied surface treatment of a fluorescently labeled Bovine Serum Albumin (BSA) protein, on the walls of a closed (sealed) microchannel is achieved via a well-defined gradient in plasma intensity. The microchips comprised a microchannel positioned in-between two microelectrodes (embedded in the chip) with a variable electrode separation along the length of the channel. The channel and electrodes were 50 μm and 100 μm wide, respectively, 50 μm deep, and adjacent to the channel for a length of 18 mm. The electrode separation distance was varied linearly from 50 μm at one end of the channel to a maximum distance of 150, 300, 500, or 1000 μm to generate a gradient in helium plasma intensity. Plasma ignition was achieved at a helium flow rate of 2.5 ml/min, 8.5 kVpk-pk, and 10 kHz. It is shown that the plasma intensity decreases with increasing electrode separation and is directly related to the residual amount of BSA left after the treatment. The plasma intensity and surface protein gradient, for the different electrode gradients studied, collapse onto master curves when plotted against electrode separation. This precise spatial control is expected to enable the surface protein gradient to be tuned for a range of applications, including high-throughput screening and cell-biomolecule-biomaterial interactions.  相似文献   

7.
In this study, a microfluidic process is proposed for preparing monodisperse micrometer-sized hydrogel beads. This process utilizes non-equilibrium aqueous droplets formed in a polar organic solvent. The water-in-oil droplets of the hydrogel precursor rapidly shrunk owing to the dissolution of water molecules into the continuous phase. The shrunken and condensed droplets were then gelled, resulting in the formation of hydrogel microbeads with sizes significantly smaller than the initial droplet size. This study employed methyl acetate as the polar organic solvent, which can dissolve water at 8%. Two types of monodisperse hydrogel beads—Ca-alginate and chitosan—with sizes of 6–10 μm (coefficient of variation < 6%) were successfully produced. In addition, we obtained hydrogel beads with non-spherical morphologies by controlling the degree of droplet shrinkage at the time of gelation and by adjusting the concentration of the gelation agent. Furthermore, the encapsulation and concentration of DNA molecules within the hydrogel beads were demonstrated. The process presented in this study has great potential to produce small and highly concentrated hydrogel beads that are difficult to obtain by using conventional microfluidic processes.  相似文献   

8.
Recent years have witnessed a strong trend towards analysis of single-cells. To access and handle single-cells, many new tools are needed and have partly been developed. Here, we present an improved version of a single-cell printer which is able to deliver individual single cells and beads encapsulated in free-flying picoliter droplets at a single-bead efficiency of 96% and with a throughput of more than 10 beads per minute. By integration of acoustophoretic focusing, the cells could be focused in x and y direction. This way, the cells were lined-up in front of a 40 μm nozzle, where they were analyzed individually by an optical system prior to printing. In agreement with acoustic simulations, the focusing of 10 μm beads and Raji cells has been achieved with an efficiency of 99% (beads) and 86% (Raji cells) to a 40 μm wide center region in the 1 mm wide microfluidic channel. This enabled improved optical analysis and reduced bead losses. The loss of beads that ended up in the waste (because printing them as single beads arrangements could not be ensured) was reduced from 52% ± 6% to 28% ± 1%. The piezoelectric transducer employed for cell focusing could be positioned on an outer part of the device, which proves the acoustophoretic focusing to be versatile and adaptable.  相似文献   

9.
Catechol-O-methyl transferase (COMT) enzyme catalyzes the metabolism of dopamine and other catechols in the brain. Several articles investigated catechol-O-methyltransferase (COMT) Val158Met polymorphism as risk factor for alcohol dependence (AD) but the results were inconclusive. The aim of present meta-analysis was to evaluate the association of Val158Met (COMT) polymorphism with AD. Authors performed keyword search of the 4 electronic databases—Pubmed, Google Scholar, Springer Link and Science Direct databases up to December 31, 2019. Total eighteen studies that investigated the association of Val158Met polymorphism with AD were retrieved. The pooled results from the meta-analysis (2278 AD cases and 3717 healthy controls) did not show association with AD using all 5 genetic models (allele contrast model: OR = 1.02, 95% CI = 0.90–1.14, p = 0.03; homozygote model: OR = 1.06, 95% CI = 0.81–1.38, p = 0.69; dominant model: OR = 0.99, 95% CI = 0.85–1.14, p = 0.87; co-dominant model: OR = 0.97, 95% CI = 0.86–1.11, p = 0.71; recessive model: OR = 1.05;95% CI = 0.85–1.29, p = 0.61). Results of subgroup analysis showed that Val158Met is not risk for AD in Asian and Caucasian population. In conclusion, COMT Val158Met is not a risk factor for alcohol dependence.  相似文献   

10.
We developed a microfluidic device to culture cellular spheroids of controlled sizes and suitable for live cell imaging by selective plane illumination microscopy (SPIM). We cocultured human umbilical vein endothelial cells (HUVECs) within the spheroids formed by hepatocellular carcinoma cells, and studied the distributions of the HUVECs over time. We observed that the migration of HUVECs depended on the size of spheroids. In the spheroids of ∼200 μm diameters, HUVECs migrated outwards to the edges within 48 h; while in the spheroids of ∼250 μm diameters, there was no outward migration of the HUVECs up to 72 h. In addition, we studied the effects of pro-angiogenic factors, namely, vascular endothelial growth factor (VEGF) and fibroblast growth factor (β-FGF), on the migration of HUVECs in the carcinoma cell spheroid. The outward migration of HUVECs in 200 μm spheroids was hindered by the treatment with VEGF and β-FGF. Moreover, some of the HUVECs formed hollow lumen within 72 h under VEGF and β-FGF treatment. The combination of SPIM and microfluidic devices gives high resolution in both spatial and temporal domains. The observation of HUVECs in spheroids provides us insight on tumor vascularization, an ideal disease model for drug screening and fundamental studies.  相似文献   

11.
Genetic variation in the angiotensin II type 1 receptor (AT1R) has an important effect on the outcome of acute coronary syndrome (ACS) initiated treatment with captopril. This study aims to investigate the impact of genetic polymorphism of AT1R (rs5186 and rs275651) on the ACS outcome in Iraqi patients treated with captopril. A total of 250 Iraqi individuals with ACS were included in this case—control study and they were divided into two study groups; Study group 1 included 125 participants who were prescribed captopril, 25 mg twice daily and study group 2 included 125 participants who received no captopril as part of their ACS treatment (control study). The AT1R gene (rs5186) CC genotype was found to be associated with ST-elevation myocardial infarction (STEMI) (Odd’s ratio (O.R) = 1.2, P = 0.7), while AC was associated with Non-ST-elevation myocardial infarction (NSTEMI) and unstable angina (UA) (O.R = 1.2, P = 0.8). AC genotype is more prone to have Percutaneous coronary intervention (PCI) after ACS attack (O.R = 1.2, P = 0.6). CC genotype had a risk to get less improvement (O.R = 1.6, P = 0.5), so might require higher doses of captopril during acute coronary insult. The AT1R gene (rs275651) AA genotype was associated with UA (O.R = 1.3, P = 0.9). AA and AT genotypes were more prone to have PCI after ACS attack (O.R = 3.9 P = 0.2, O.R = 3.5, P = 0.3 respectively) and thus requiring higher doses of captopril. We conclude that the AT1R rs5186, rs275651 genetic polymorphisms might partially affect the clinical outcome of ACS patients treated with captopril and might have captopril resistance which requires higher doses.  相似文献   

12.
To sequentially handle fluids is of great significance in quantitative biology, analytical chemistry, and bioassays. However, the technological options are limited when building such microfluidic sequential processing systems, and one of the encountered challenges is the need for reliable, efficient, and mass-production available microfluidic pumping methods. Herein, we present a bubble-free and pumping-control unified liquid handling method that is compatible with large-scale manufacture, termed multilayer microfluidic sample isolated pumping (mμSIP). The core part of the mμSIP is the selective permeable membrane that isolates the fluidic layer from the pneumatic layer. The air diffusion from the fluidic channel network into the degassing pneumatic channel network leads to fluidic channel pressure variation, which further results in consistent bubble-free liquid pumping into the channels and the dead-end chambers. We characterize the mμSIP by comparing the fluidic actuation processes with different parameters and a flow rate range of 0.013 μl/s to 0.097 μl/s is observed in the experiments. As the proof of concept, we demonstrate an automatic sequential fluid handling system aiming at digital assays and immunoassays, which further proves the unified pumping-control and suggests that the mμSIP is suitable for functional microfluidic assays with minimal operations. We believe that the mμSIP technology and demonstrated automatic sequential fluid handling system would enrich the microfluidic toolbox and benefit further inventions.  相似文献   

13.
Label-free isolation of single cells is essential for the growing field of single-cell analysis. Here, we present a device which prints single living cells encapsulated in free-flying picoliter droplets. It combines inkjet printing and impedance flow cytometry. Droplet volume can be controlled in the range of 500 pl–800 pl by piezo actuator displacement. Two sets of parallel facing electrodes in a 50 μm × 55 μm channel are applied to measure the presence and velocity of a single cell in real-time. Polystyrene beads with <5% variation in diameter generated signal variations of 12%–17% coefficients of variation. Single bead efficiency (i.e., printing events with single beads vs. total number of printing events) was 73% ± 11% at a throughput of approximately 9 events/min. Viability of printed HeLa cells and human primary fibroblasts was demonstrated by culturing cells for at least eight days.  相似文献   

14.
HbA1c is used extensively for the diagnosis and management of diabetes mellitus. It constitutes 80% of glycated HbA1(Glycated haemoglobin(GHb)A), and depends upon blood glucose and RBC life span. RBC life span varies with anemia, leading to a consequent alteration in the HbA1c value irrespective of the circulating blood glucose concentration. But to the best of our knowledge no Hb cut offs have been derived for appropriate interpretation of HbA1c. The prevalence of anemia in Indian population is nearly 40% as per its definition by WHO—Hb < 12 g/dL in females and < 13 g/dL in males—with most cases attributable to nutritional deficiencies. Hence, we aimed to identify Hb cut-off for accurate interpretation of HbA1c in presence of deficiency anemias. Partial correlation between random blood glucose (RBG) and HbA1c was studied in 1312 subjects, 470 of whom had deficiency-related anemia]. The data was adjusted for age, sex and Hb. Partial correlation between RBG and HbA1c was highly significant (p < 0.0001) till Hb of 8.1 gm/dL. Significance reduced to p = 0.003 and p = 0.006 as the cut off of Hb reduced to 7.1 gm/dL and 5.0 gm/dL, respectively, but was not lost. Hence, caution in interpretation of HbA1c is not required till an Hb of 5 g/dL.  相似文献   

15.
Systemic lupus erythematosus (SLE) is an inflammatory autoimmune disease which is characterized by dysregulation of various cytokines propagating the inflammatory processes that is responsible for tissue damage. Tumor necrosis factor alpha (TNF-α) is one of the most important immunoregulatory cytokines that has been implicated in the different autoimmune diseases including SLE. Two hundred and two patients with SLE and 318 controls were included in the study. The TNF-α gene promoter region (from − 250 to − 1000 base pairs) was analyzed by direct Sanger’s DNA sequencing method to find promoter variants associated with South Indian SLE patients. We have analyzed six TNF-α genetic polymorphisms including, − 863C/A (rs1800630), − 857C/T (rs1799724), − 806C/T (rs4248158), − 646G/A (rs4248160), − 572A/C (rs4248161) and − 308G/A (rs1800629) in both SLE patients and controls. We did not find association of TNF-α gene promoter SNPs with SLE patients. However, the − 863A (rs1800630) allele showed association with lupus nephritis phenotype in patients with SLE (OR: 1.62, 95%CI 1.04–2.53, P = 0.034). We found serum TNF-α level was significantly elevated in SLE cases as compared to control and found no association with any of the polymorphisms. The haplotype analysis revealed a significant protective association between the wild TNF-α alleles at positions − 863C, − 857C, − 806C, − 646G, − 572A and − 308G (CCCGAG) haplotype with lupus nephritis phenotype (OR 0.53, 95% CI 0.35–0.82, P = 0.004). Additionally, the TNF-α − 863 C/A (rs1800630) polymorphism and HLA-DRB1*07 haplotype showed significant differences between SLE patients and controls (OR 4.79, 95% CI 1.73–13.29, P = 0.0009). In conclusion, TNF-α − 863A allele (rs1800630) polymorphism is associated with increased risk of nephritis in South Indian SLE patients. We also found an interaction between HLA-DRB1*07 allele with TNF-α − 863 C/A promoter polymorphism giving supportive evidence for the tight linkage disequilibrium between TNF-α promoter SNPs and MHC class II DRB1 alleles.  相似文献   

16.
Blood cell sorting is critical to sample preparation for both clinical diagnosis and therapeutic research. The spiral inertial microfluidic devices can achieve label-free, continuous separation of cell mixtures with high throughput and efficiency. The devices utilize hydrodynamic forces acting on cells within laminar flow, coupled with rotational Dean drag due to curvilinear microchannel geometry. Here, we report on optimized Archimedean spiral devices to achieve cell separation in less than 8 cm of downstream focusing length. These improved devices are small in size (<1 in.2), exhibit high separation efficiency (∼95%), and high throughput with rates up to 1 × 106 cells per minute. These device concepts offer a path towards possible development of a lab-on-chip for point-of-care blood analysis with high efficiency, low cost, and reduced analysis time.  相似文献   

17.
Structural variants (SVs) may play important roles in human adaptation to extreme environments such as high altitude but have been under-investigated. Here, combining long-read sequencing with multiple scaffolding techniques, we assembled a high-quality Tibetan genome (ZF1), with a contig N50 length of 24.57 mega-base pairs (Mb) and a scaffold N50 length of 58.80 Mb. The ZF1 assembly filled 80 remaining N-gaps (0.25 Mb in total length) in the reference human genome (GRCh38). Markedly, we detected 17 900 SVs, among which the ZF1-specific SVs are enriched in GTPase activity that is required for activation of the hypoxic pathway. Further population analysis uncovered a 163-bp intronic deletion in the MKL1 gene showing large divergence between highland Tibetans and lowland Han Chinese. This deletion is significantly associated with lower systolic pulmonary arterial pressure, one of the key adaptive physiological traits in Tibetans. Moreover, with the use of the high-quality de novo assembly, we observed a much higher rate of genome-wide archaic hominid (Altai Neanderthal and Denisovan) shared non-reference sequences in ZF1 (1.32%–1.53%) compared to other East Asian genomes (0.70%–0.98%), reflecting a unique genomic composition of Tibetans. One such archaic hominid shared sequence—a 662-bp intronic insertion in the SCUBE2 gene—is enriched and associated with better lung function (the FEV1/FVC ratio) in Tibetans. Collectively, we generated the first high-resolution Tibetan reference genome, and the identified SVs may serve as valuable resources for future evolutionary and medical studies.  相似文献   

18.
Biomolecular separation is crucial for downstream analysis. Separation technique mainly relies on centrifugal sedimentation. However, minuscule sample volume separation and extraction is difficult with conventional centrifuge. Furthermore, conventional centrifuge requires density gradient centrifugation which is laborious and time-consuming. To overcome this challenge, we present a novel size-selective bioparticles separation microfluidic chip on a swinging bucket minifuge. Size separation is achieved using passive pressure driven centrifugal fluid flows coupled with centrifugal force acting on the particles within the microfluidic chip. By adopting centrifugal microfluidics on a swinging bucket rotor, we achieved over 95% efficiency in separating mixed 20 μm and 2 μm colloidal dispersions from its liquid medium. Furthermore, by manipulating the hydrodynamic resistance, we performed size separation of mixed microbeads, achieving size efficiency of up to 90%. To further validate our device utility, we loaded spiked whole blood with MCF-7 cells into our microfluidic device and subjected it to centrifugal force for a mere duration of 10 s, thereby achieving a separation efficiency of over 75%. Overall, our centrifugal microfluidic device enables extremely rapid and label-free enrichment of different sized cells and particles with high efficiency.  相似文献   

19.
X-ray repair cross-complementing group 1 (XRCC1) plays a key role in the base excision repair pathway, as a scaffold protein that brings together proteins of the DNA repair complex. Several studies have reported contradictory results for XRCC1 exon 6 C>T (rs1799782) gene polymorphism and cancer risk in Indian population has provided inconsistent results. Therefore, we have performed this meta-analysis to evaluate the relationship between XRCC1 exon 6 C>T gene polymorphism and risk of cancer by published studies. We searched PubMed and Google scholar web databases to cover all studies published on association between XRCC1 exon 6 C>T gene polymorphism and cancer risk. The meta-analysis was carried out and pooled odds ratios (ORs) and 95% confidence intervals (95% CIs) were used to appraise the strength of association. In order to derive a more precise estimation of the association, A total of 3197 confirmed cancer cases and 3819 controls were included from eligible seventeen case-controls studies. Results from overall pooled analysis demonstrated suggested that that variant allele (T vs. C: OR 1.301, 95% CI 1.003–1.688, p = 0.047) was associated with the risk of overall cancer. Other genetic models; heterozygous (TC vs. CC: OR 1.108, 95% CI 0.827–1.485, p = 0.491), homozygous (TT vs. CC: OR 1.479, 95% CI 0.877–2.493, p = 0.142), dominant (TT+TC vs. CC: OR 1.228, 95% CI 0.899–1.677, p = 0.196) and recessive (TT vs. TC+CC: OR 1.436, 95% CI 0.970–2.125, p = 0.071) did not reveal statistical association. Publication bias observation was also considered and none was detected during the analysis. The present meta-analysis suggested that the variant allele T of XRCC1 exon 6 gene polymorphism was associated with the risk of cancer. It is therefore pertinent to confirm this finding in a large sample size to divulge the mechanism of this polymorphism and cancer risk in Indian population.  相似文献   

20.
Implantable drug delivery systems can provide long-term reliability, controllability, and biocompatibility, and have been used in many applications, including cancer pain and non-malignant pain treatment. However, many of the available systems are limited to zero-order, inconsistent, or single burst event drug release. To address these limitations, we demonstrate prototypes of a remotely operated drug delivery device that offers controllability of drug release profiles, using osmotic pumping as a pressure source and magnetically triggered membranes as switchable on-demand valves. The membranes are made of either ethyl cellulose, or the proposed stronger cellulose acetate polymer, mixed with thermosensitive poly(N-isopropylacrylamide) hydrogel and superparamagnetic iron oxide particles. The prototype devices'' drug diffusion rates are on the order of 0.5–2 μg/h for higher release rate designs, and 12–40 ng/h for lower release rates, with maximum release ratios of 4.2 and 3.2, respectively. The devices exhibit increased drug delivery rates with higher osmotic pumping rates or with magnetically increased membrane porosity. Furthermore, by vapor deposition of a cyanoacrylate layer, a drastic reduction of the drug delivery rate from micrograms down to tens of nanograms per hour is achieved. By utilizing magnetic membranes as the valve-control mechanism, triggered remotely by means of induction heating, the demonstrated drug delivery devices benefit from having the power source external to the system, eliminating the need for a battery. These designs multiply the potential approaches towards increasing the on-demand controllability and customizability of drug delivery profiles in the expanding field of implantable drug delivery systems, with the future possibility of remotely controlling the pressure source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号