首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 242 毫秒
1.
在一些特殊数列中,既非等差数列又非等比数列。往往根据观察求其通项公式,这既要有深厚的数学功底,又要对所求数列进行证明。是否可用中学生学过的等差和等比数列通项公式与求和公式求此类数列的通项公式呢?下面谈谈本人在此方面的粗浅体会。 如:数列{a_n}中a_1=1a_(n+1)=2a_n+1求数列a_n通项公式及a_k  相似文献   

2.
数列{a_n},a_1=1,a_(n+1)=(1/(1+a_n)),n∈N.根据此数列的特点,下面给出求其极限的三种方法,供读者参考.(一)用数学归纳法证明数列{a_n}的奇子列与偶子列的单调性,再由单调有界数列存在极限的公理求其极限.  相似文献   

3.
在组合公式中有:C_n~0+C_n~1+C_n~2……C_n~n=2~n对于排列,约定:P_n~0=1,能否有一个简单的数学式表示sum from k=0 to n P_n~k呢?本文将给出明确的回答。设a_n=sum from k=0 to n P_n~k,由于数列{a_n}是由排列问题引出,所以称数列{a_n}为排列数列。经计算有:  相似文献   

4.
设a_i>0,i=1,2,……n,n+1,令A_n=[a_1+a_2+…+a_n]/n,G_n=(a_1,a_2,…a_n)n,则有拉多(R·Rado)不等式(n+1)(A_n+l-G_(n+1))≥n(A_n-G_n)(1)与波维奇(Popovie)不等式  相似文献   

5.
设a_1, a_2,…,a_n为n个正数,令A_n=(a_1+a_2+…a_n)/n,分别称A_n和G_n为这n个正数的算术平均值和几何平均值.算述——几何平均值定理 对于任意自然数n,有A_n≥G_n等号成立当且仅当a_1=a_2=…=a_n.应用高等数学中的几个简单不等式可以很容易地证明算术——几何平均值定理.[证法1]利用e~x≥1+x当且仅当x=0时取等号,有当且仅当诸a_i/A_n-1=0(i=1,2,…,n)即a_1=a_2=…=a_n=A_n时等号成立.证毕.[证法2]应用不等式ln(1+x)≤x,x∈(-1,+∞),等号当且仅当x=0时成立,就有  相似文献   

6.
Hardy不等式:若P>1,a_n≥0,且A_n=a_1+…+a_n,则 (1)sum from 1 to N (A_n/n)~P<(p/(p-1))~p sum from 1 to N a_n~p1920年,G.H.Hardy首次证明了(1),1927年,E.T.Copson对此作了加权推广(参见[11],PP,239—247):  相似文献   

7.
设a_i>0,i=1,2,…,n,n 1,令A_n=1/n(a_1 a_2 … a_n),G_n=(a_1a_2…a_n)~n,则有 (n 1)(A_(n 1)-G_(n 1)≥n(A_n-G_n) (1)式中等号当且仅当a_( 1)~u=G_n时成立。此不等式称为拉多(R.Rado)不等式。近年来,国内数学杂志已有不少文章加以讨论,有兴趣的读者可以查阅参考文献〔1〕,〔2〕、〔3〕,〔4〕,〔5〕等。 笔者在〔1〕中得到了另一种拉多型的不等式,即对于任何实数值a_1,a_2,…,a_n;b_1,b_2,…b_n来说,均有  相似文献   

8.
研究从属的双调和映射序列{fn}的收敛性.首先,讨论满足fn相似文献   

9.
甲 实数域R上的无穷常数项级数的基本代数系统一 实数域R上的常数项级数设 u_1,u_2,…u_n…∈Ru_1,u_2,…u_n…(1)是实数域R上的无穷数列,u_1+u_2+…+u_n+…=sum from n=1 to ∞ u_n (2)(2)叫做实数域R上的无穷级数,u_n叫做(2)的通项.  相似文献   

10.
我们知道,对于任意实数a_1,a_2,……a_n,b_1,b_2,……b_n,不等式 (a_1b_1 a_2b_2 … a_nb_n)~2≤(a_1~2 a_2~2 … a_n~2)(b_1~2 b_2~2 … b_n~2) (1)叫做Cauchy不等式。这是一个基本的不等式。由它可以得到很多重要性质。 这个不等式在n维欧氏空间V中,既具有普遍性,又具有特殊性.其普遍性在于,对于V中给定的内积,任取V的一个标准正交基{a_1,a_2,……,a_n},对任意  相似文献   

11.
引 言 在代数中,众所周知有如下命题成立:[原命题]:若 ab=1(a≠-1,b≠-1),则: 1/(1+a)+1/(1+b)=1 (1) a/(1+a)+b/(1+b)=1 (2) 文[1]笔者给出原命题的推广结论:[推广Ⅰ]:若multiply from k=1 to n(x_k)=1,且f(k)=1+x_k+x_kx_(k+1)+…x_kx_(k+1)…x_nx_1x_2…x_(k-2),(f(k)≠0),并设f_v(k)为多项式 f(k)的第i项,则:  相似文献   

12.
设任意实数a_i,b_i(i=1,2,……,n),有(a_1b_1+a_2b_2+……a_nb_n)~2≤((a_1)~2+(a_2)~2+……+(a_n)~2)(b_1~2+b_2~2+……+b_(?)~2)即(sum from i=1(a_ib_i))~2≤sum from i=1(a_i)~2·sum from i=1(b_i~2),并且当且仅当a_i/b_i=k;即a_i与b_i(i=1,2,……,n)成比例时取等号.这个不等式叫做柯西不等式.其证明方法在此省略,主要说明其应用方法.柯西不等式是一个重要的数学不等式,在中学教材中未提及,但在教学过程中若能适时地引入,可以大大简化解题过程,拓宽视野,起到事半功倍的作用,本文特举几例说明如下:例1 求证ac+bd≤(a~2+b~2)~(1/2)·(c~2+d~2)~(1/2)在中学阶段一般采用比较法或分析法,当ac+bd≤0时不等式显见成立.当ac+bd>0时用分析法.欲证ac+bd≤(a~2+b~2)~(1/2)·(c~2+d~2)~(1/2),只须证(ac+bd)~2≤(a~2+b~2)(c~2+d~2)即 2abcd≤a~2d~2+b~2c~2即(ad—bc)~2≥0显见最后一个不等式成立.所以ac+bd≤(a~2+b~2)~(1/2)·(c~2+d~2)~(1/2)。其实由柯西不等式有:  相似文献   

13.
求函数表达式在初等数学中占有一定的比例,中学教材中介绍的求函数表达式的几种方法不能完全解决学生在课外阅读中碰到的一些求函数表达式的问题.为了提高学生学习教学的兴趣和解题能力,本文总结介绍几种求函数表达式的方法,供数学爱好者参考.1.定义法即根据函数概念及其运算法则求函数表达式的方法.例1 设f(n)=2n+1,g(n)=3 当n=1时 f〔 g(n-1) 〕当n≥2时(其中n∈N,求函数g(n)的表达式.解:∵当n≥2时.g(n)=f〔g(n--1)〕=2〔g(n-1)+1〕+1∴g(n)+1=2〔g(n-1)十1〕∴(g(n)+1)/(g(n-1)+1)=2令g(n)+1=h(n)(n∈N)则g(n-1)+1=h(n+1),(n≥2且n∈N)  相似文献   

14.
证明了自然数数码和的m次方映射数列{nk}为周期数列,给出了当m=2,3,4,5,6时,{nk}的周期节及对任意自然数n,必存在自然数k0,当k≥k0时,Tk(n)进入相应周期节的条件。  相似文献   

15.
高考数学试题题型新颖,灵活性强,充分体现了数学思维从现象到本质的一个渐进认识的过程。在解决这些问题的过程中,透过问题的表面现象,观察分析,深入挖掘问题本身的内在因素,是正确、完整解答问题的关键。下面笔者就2003年高考理科(22)题来具体谈一谈。(22)设{an}是集合{2t+2s|0≤s相似文献   

16.
在代数(必修本)下册封面上有一自然数平方和1~2+2~2…+n~2=1/6(n+1)(2n+1),该结论在P_(119),例1中用数学归纳法给以证明,P_(124)练习题中用数学归纳法证明:1·2+2·3+3·4+…n(n+1)=(1/3)n(n+ 1)(n+2),P_(124)习题二十三又用数学归纳法证明1~3+2~3+3~3+…+n~3=(1/4)n~2(n+1)~2;1~2+3~2+5~2+…+(2n-1)~2=(1/3)n(4n~2-1),P_(132)复习参考六用数学归纳法证明:1×2×3+2×3×4+3×4×5+…+n(n+1)(n+2)=(1/4)n(n+1)(n+2)(n+3),诸如此类的有关自然数数列求和都是给出了结论,然后用数学归纳法进行证明,不少同学会提出它们作为书皮封面说明是很重要的,那么其结论是怎么来得呢?这是有关自然数数列求和一类公式性的结论,在高考中也曾出现过.例:89年理科第23题是否存在常数a、b、c使得等式:1×2~2+2×3~2+…+n(n+1)~2=(1/12)n(n+1)(an~2+bn+c),对于一切自然数都成立,并证明你的结论.以上所举自然数数列是一类相关习题,下面给出它们结论的证明.(1)1×2+2×3+3×4+n(n+1)=(1/3)n(n+1)(n+2)(2)1×2×3+2×3×4+…+n(n+1)(n+2)=(1/4)n(n+1)(n+2)(n+3)证1:设S=1×2×3+2×3×4+…+n(n+1)(n+2)利用课本错位减法S=1×2×3+2×3×4+3×4×5+…+n(n+1)(n+2)-S=-〔1×2×3+2×3×4+…(n-1)n(n+1)+n (n+1)(n+2)〕0=3×1×2  相似文献   

17.
在数的整除理论中,经常要判断一个数能否被另一个数整除.虽然用初等方法也能证明判断的正确性,但用同余理论解决这类问题,更是简捷明了,而且有一定的高度.在这里,我们将不加证明也反复用到如下事实:1.设b_i(i=1,2,……,n)C都是整数,若对于i的每一个可能值都有c|b_i,则c|sum from i=1(b_(?))2.设a、b、c、m>0,n>0都是整数,若a≡b(modm),则有a~n≡b~n(modm)及ac≡bc(modm).3.设a_1 b_1及m>0均为整数,若a_i≡b_i(modm),i=1,2,…n则有sum from i=1(a_i)≡sum from i=1(b_i)(modm)及multiply from i=1(a_i)(modm)例1,任何一个整数a=a_na_(n-1)…a_1a_1(a_0、 a_1、…依次是这个n+1位整数的个位、十位、…上的数字,0≤a_i<10,a≠0.下同)都可以用科学计数法写成如下形式.a=a_n×10~n十a_(n-1)×10~(n-1)十…a_1×10十a_0.上式右边的 n十1项中,前n项都能被2或5整除,那么,a能否被2或5整除就取决于最后一项 a_0了.因此,只要a的个位数字是0,2,4,6,8中的一个,a就能使2整除,只要a的个位数字是0或5,a就能被5整除.用同余理论,这一事实可证明如下:  相似文献   

18.
L·Fejer在[1]文中证明了下面的论断:二、如果面△~4an≥(n=1,2,…),b_n→O u b _1≠O_1则S(x)=sum from n=1 to ∞(b_n)SinnX在区间(π/2,π)上单减.2、如果△_4an≥O(n=1,2,…)且a_n→O,则C(x)=sum from n=1 to ∝(a_n)cosnx在区间(0,π)上单减.  相似文献   

19.
从文(1)和(2)中,我们知道,对于给定的实数域上m×n阶矩阵A,若有适合Penrose方程:(1)AGA=A;(2)GAG=G;(3)(AG)~T=AG;(4)(GA)~T=GA的全部或一部分条件的n×m阶实矩阵G,都称之为矩阵A的广义逆矩阵。通常把适合Penrose条件{i、j…}(这里{i、j…}是{1),2),3),4)}的一个子集)的所有广义逆矩阵G的集合,记为A{1,j,…}。而且还知道,结果在A{1}中找到一个特殊广义逆A~-就可以写出A{i}的通式G=A~- V(I-AA~-) (I-A~-A)U,U、V任取,同样,如果在A  相似文献   

20.
文[1]提出,任一完备空间是第二纲的(俗称纲定理)而未给出证明令初学者费解.本文首先谈谈完备空间的一个充要条件,接着对纲定理加以论述,并给出一个判定稀疏集的条件.本文所采用的符号可参阅[2]文[3]指出,完备空间内的闭集本身构成完备的子空间.由此,我们可以得到如下完备空间的一个充要条件.定理1(X,ρ)为完备空间的充要条件是:若(?)_n为X的闭子集,当(?)_1≥(?)_2≥…≥(?)_n≥…且dia (?)_n→0时,(?)(?)_n为单点集.n=1,2,….证明(?)从每个(?)_n内取一点x_n∈(?)_m由于limdia(?)_n=0,则{x_m}为Cauchy序列.因为X是完备空间,故X中的任一Cauchy序列都收敛,即limx_m=x_0存在.巳知(?)_n为闭集.故x_0∈(?)_n且(?)(?)_n不空,n=1,2,….若又有y_0∈(?)(?)_n,则ρ(x_0,y_0)≤limdia(?)_n=0,于是x_0=y_0,(?)记A_1={x_m}_(n=1,2,…);A_2={x_n}_(n=2,3,…);A_k={x_m)_(m=k,k+1,…),…并令(?)_n=(?)_m,则(?)_m为闭集,且(?)_1≥(?)_2≥…≥(?)_m≥….显然dis(?)_m=diaA_m→0,于是由题设,(?)x_0∈(?)(?)_m,从而就有Lim(x_0,x_m)→0,即{x_m}在X内有极限.定义1 若A≤x在(X,ρ)内的任一非空开集内无处稠密,对非空开集G有(?)(?)G,称A在X内稀疏.由此不难证明如下命题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号