首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The goal of this randomized, double-blind, cross-over study was to assess the acute effects of caffeine ingestion on muscular strength and power, muscular endurance, rate of perceived exertion (RPE), and pain perception (PP) in resistance-trained men. Seventeen volunteers (mean?±?SD: age?=?26?±?6 years, stature?=?182?±?9?cm, body mass?=?84?±?9?kg, resistance training experience?=?7?±?3 years) consumed placebo or 6?mg?kg?1 of anhydrous caffeine 1?h before testing. Muscular power was assessed with seated medicine ball throw and vertical jump exercises, muscular strength with one-repetition maximum (1RM) barbell back squat and bench press exercises, and muscular endurance with repetitions of back squat and bench press exercises (load corresponding to 60% of 1RM) to momentary muscular failure. RPE and PP were assessed immediately after the completion of the back squat and bench press exercises. Compared to placebo, caffeine intake enhanced 1RM back squat performance (+2.8%; effect size [ES]?=?0.19; p?=?.016), which was accompanied by a reduced RPE (+7%; ES?=?0.53; p?=?.037), and seated medicine ball throw performance (+4.3%, ES?=?0.32; p?=?.009). Improvements in 1RM bench press were not noted although there were significant (p?=?.029) decreases in PP related to this exercise when participants ingested caffeine. The results point to an acute benefit of caffeine intake in enhancing lower-body strength, likely due to a decrease in RPE; upper-, but not lower-body power; and no effects on muscular endurance, in resistance-trained men. Individuals competing in events in which strength and power are important performance-related factors may consider taking 6?mg?kg?1 of caffeine pre-training/competition for performance enhancement.  相似文献   

2.
Understanding how loading affects power production in resistance training is a key step in identifying the most optimal way of training muscular power – an essential trait in most sporting movements. Twelve elite male sailors with extensive strength-training experience participated in a comparison of kinematics and kinetics from the upper body musculature, with upper body push (bench press) and pull (bench pull) movements performed across loads of 10–100% of one repetition maximum (1RM). 1RM strength and force were shown to be greater in the bench press, while velocity and power outputs were greater for the bench pull across the range of loads. While power output was at a similar level for the two movements at a low load (10% 1RM), significantly greater power outputs were observed for the bench pull in comparison to the bench press with increased load. Power output (P max) was maximized at higher relative loads for both mean and peak power in the bench pull (78.6 ± 5.7% and 70.4 ± 5.4% of 1RM) compared to the bench press (53.3 ± 1.7% and 49.7 ± 4.4% of 1RM). Findings can most likely be attributed to differences in muscle architecture, which may have training implications for these muscles.  相似文献   

3.
ABSTRACT

This study examined the reliability and validity of three methods of estimating the one-repetition maximum (1RM) during the free-weight prone bench pull exercise. Twenty-six men (22 rowers and four weightlifters) performed an incremental loading test until reaching their 1RM, followed by a set of repetitions-to-failure. Eighteen participants were re-tested to conduct the reliability analysis. The 1RM was estimated through the lifts-to-failure equations proposed by Lombardi and O’Connor, general load-velocity (L-V) relationships proposed by Sánchez-Medina and Loturco and the individual L-V relationships modelled using four (multiple-point method) or only two loads (two-point method). The direct method provided the highest reliability (coefficient of variation [CV] = 2.45% and intraclass correlation coefficient [ICC] = 0.97), followed by the Lombardi’s equation (CV = 3.44% and ICC = 0.94), and no meaningful differences were observed between the remaining methods (CV range = 4.95–6.89% and ICC range = 0.81–0.91). The lifts-to-failure equations overestimated the 1RM (3.43–4.08%), the general L-V relationship proposed by Sánchez-Medina underestimated the 1RM (?3.77%), and no significant differences were observed for the remaining prediction methods (?0.40–0.86%). The individual L-V relationship could be recommended as the most accurate method for predicting the 1RM during the free-weight prone bench pull exercise.  相似文献   

4.
This study aimed to examine the reliability of different power and velocity variables during the Smith machine bench press (BP) and bench press throw (BPT) exercises. Twenty-two healthy men conducted four testing sessions after a preliminary BP one-repetition maximum (1RM) test. In a counterbalanced order, participants performed two sessions of BP in one week and two sessions of BPT in another week. Mean propulsive power, peak power, mean propulsive velocity, and peak velocity at each tenth percentile (20–70% of 1RM) were recorded by a linear transducer. The within-participants coefficient of variation (CV) was higher for the load–power relationship compared to the load–velocity relationship in both the BP (5.3% vs. 4.1%; CV ratio = 1.29) and BPT (4.7% vs. 3.4%; CV ratio = 1.38). Mean propulsive variables showed lower reliability than peak variables in both the BP (5.4% vs. 4.0%, CV ratio = 1.35) and BPT (4.8% vs. 3.3%, CV ratio = 1.45). All variables were deemed reliable, with the peak velocity demonstrating the lowest within-participants CV. Based upon these findings, the peak velocity should be chosen for the accurate assessment of BP and BPT performance.  相似文献   

5.
ABSTRACT

The velocity and magnitude in which the eccentric phase of an exercise is completed directly affects performance during the concentric phase. Therefore, the purpose of this research was to investigate the effects of eccentric phase duration on concentric outcomes at 60% and 80% of one-repetition maximum (1RM) in the squat and bench press. Sixteen college-aged, resistance-trained males completed 1RM testing, established normative eccentric durations, and performed fast (0.75 times normative) and slow (2.0 times normative) metronome-controlled eccentric duration repetitions. Outcome measures assessed during the concentric phase were: average concentric velocity (ACV), peak concentric velocity (PCV), rating of perceived exertion (RPE), range of motion (ROM), and barbell path. Eccentric duration was significantly and inversely correlated with ACV at 60% (r = ?0.408, p = 0.004) and 80% (r = ?0.477, p = 0.001) of 1RM squat. At 60% of 1RM squat, both fast and slow eccentric conditions produced greater (p < 0.001) PCV than normative duration with fast also producing greater PCV than slow (p = 0.044). Eccentric duration had no impact on RPE, ROM, or barbell path. Our results report for the first time that resistance-trained males performing a deliberately faster eccentric phase may enhance their own squat and bench press performance.  相似文献   

6.
This study compared the effects of two velocity loss thresholds during a power-oriented resistance training program on the mechanical capacities of lower-body muscles. Twenty men were counterbalanced in two groups (VL10 and VL20) based on their maximum power capacity. Both groups used the same exercises, relative intensity and repetition volume, only differing in the velocity loss threshold of each set (VL10: 10% vs. VL20: 20%). Pre- and post-training assessments included an incremental loading test and a 15-m linear sprint to assess the force- and load-velocity relationships and athletic performance variables, respectively. No significant between-group differences (P > 0.05) were observed for the force-velocity relationship parameters (ES range = 0.15–0.42), the MPV attained against different external loads (ES range = 0.02–0.18) or the 15-m sprint time (ES = 0.09). A high between-participants variability was reported for the number of repetitions completed in each training set (CV = 30.3% for VL10 and 29.4% for VL20). These results suggest that both velocity loss thresholds induce similar changes on the lower-body function. The high and variable number of repetitions completed may compromise the velocity-based approach for prescribing and monitoring the repetition volume during a power-oriented resistance training program conducted with the countermovement jump exercise.  相似文献   

7.
In its last position stand about strength training, the American College of Sports Medicine recommends a rest interval (RI) between sets ranging between 1 and 3?min, varying in accordance with the objective. However, there is no consensus regarding the optimal recovery between sets, and most studies have investigated fixed intervals. Therefore, the aim of this study was to analyse the effects of fixed versus self-suggested RI between sets in lower and upper body exercises performance. Twenty-seven healthy subjects (26?±?1.5; 75?±?15?kg; 175?±?12?cm) were randomly assigned into two groups: G1: lower body exercises and G2: upper body exercises. Squat and leg press 1 repetition maximum (1RM) were tested for the G1 and bench press and biceps curl 1RM for G2. After the 1RM tests, both groups performed three sets to concentric failure with 75% of 1RM in combination with different RIs (2?min or self-suggested) on separate days and the exercises performance was evaluated by the number of repetitions. The results demonstrated no significant differences in the number of repetitions between 2?min and self-suggested RIs that presented similar reductions with the sets progression. It was also shown that the self-suggested RI spent less time recovering than the 2?min RI group on average. This suggests that for individuals with previous experience, the self-suggested RI can be an effective option when using workloads commonly prescribed aiming hypertrophy. Also, the self-suggested RI can reduce the total training session duration, which can be a more time-effective strategy.  相似文献   

8.
Purpose: The present study aimed to investigate whether or not eccentric-only training induced different sex-related adaptations in vastus lateralis muscle architecture and knee extensors strength. Methods: Thirteen healthy women and 13 healthy men were recruited. Vastus lateralis pennation angle, fascicle length, and muscle thickness, as well as knee extensors eccentric, isometric, and concentric peak torque and one-repetition maximum (1RM) were measured. Both women and men underwent a unilateral iso-load knee-extension eccentric-only training with 120% of the concentric 1RM, consisting of 4 sets × 10 repetitions twice a week for a total of 8 weeks. Results: Pennation angle increased in women (+ 14%, 95% CI [10, 17], effect size [ES] = 1.54) but not in men (+ 5%, 95% CI [?1, 11], ES = 0.28), while fascicle length increased in both women (+ 7%, 95% CI [4, 10], ES = 1.02) and men (+ 12%, 95% CI [8, 16], ES = 1.82) and muscle thickness increased in women (+ 13%, 95% CI [8, 18], ES = 1.11) and men (+ 11%, 95% CI [7, 15], ES = 0.89). In both women and men, eccentric (18%, 95% CI [11, 25], ES = 0.96, and 16%, 95% CI [9, 22], ES = 0.82, respectively), isometric (17%, 95% CI [11, 23], ES = 0.53, and 17%, 95% CI [10, 24], ES = 0.62), concentric (12%, 95% CI [7, 16], ES = 0.49, and 9%, 95% CI [5, 13], ES = 0.42) peak torque and 1RM (10%, 95% CI [6, 14], ES = 0.53, and 10%, 95% CI [5, 15], ES = 0.50) similarly increased after the intervention. Conclusions: This study showed that the adaptations in strength are not sex-dependent, but the increases in pennation angle only in women suggest that the changes in muscle architecture may depend on sex.  相似文献   

9.
The purpose of this study was to investigate the relationship between movement velocity and relative load in three lower limbs exercises commonly used to develop strength: leg press, full squat and half squat. The percentage of one repetition maximum (%1RM) has typically been used as the main parameter to control resistance training; however, more recent research has proposed movement velocity as an alternative. Fifteen participants performed a load progression with a range of loads until they reached their 1RM. Maximum instantaneous velocity (Vmax) and mean propulsive velocity (MPV) of the knee extension phase of each exercise were assessed. For all exercises, a strong relationship between Vmax and the %1RM was found: leg press (r2adj = 0.96; 95% CI for slope is [?0.0244, ?0.0258], P < 0.0001), full squat (r2adj = 0.94; 95% CI for slope is [?0.0144, ?0.0139], P < 0.0001) and half squat (r2adj = 0.97; 95% CI for slope is [?0.0135, ?0.00143], P < 0.0001); for MPV, leg press (r2adj = 0.96; 95% CI for slope is [?0.0169, ?0.0175], P < 0.0001, full squat (r2adj = 0.95; 95% CI for slope is [?0.0136, ?0.0128], P < 0.0001) and half squat (r2adj = 0.96; 95% CI for slope is [?0.0116, 0.0124], P < 0.0001). The 1RM was attained with a MPV and Vmax of 0.21 ± 0.06 m s?1 and 0.63 ± 0.15 m s?1, 0.29 ± 0.05 m s?1 and 0.89 ± 0.17 m s?1, 0.33 ± 0.05 m s?1 and 0.95 ± 0.13 m s?1 for leg press, full squat and half squat, respectively. Results indicate that it is possible to determine an exercise-specific %1RM by measuring movement velocity for that exercise.  相似文献   

10.
Power is a fundamental component for many sporting activities; while the load that elicits peak power during different exercises and differences between sexes remains unclear. This study aims to determine the effect of sex and load on kinematic and kinetic variables during the mid-thigh clean pull. Men (n = 10) and women (n = 10) performed the mid-thigh clean pull at intensities of 40%, 60%, 80%, 100%, 120%, and 140% of one repetition maximum (1RM) power clean in a randomised and counter-balanced order, while assessing bar velocity, bar displacement, power, force, and impulse. Two-way analysis of variance revealed that men demonstrated significantly greater (p < 0.05) values for all variables across loads, excluding bar velocity. Men demonstrated significantly greater (p < 0.05) bar velocities with 40–80% 1RM; in contrast, women demonstrated significantly (p < 0.05) higher velocities with 120–140% 1RM. Irrespective of sex significantly greater (p < 0.05), system peak power, bar velocity, and displacement occurred with 40% 1RM. In contrast, peak force and impulse were significantly (p < 0.05) greater with 140% 1RM. When performing the mid-thigh clean pull, to maximise system power or bar velocity, lower loads (40–60% 1RM) are recommended. When training force production or impulse, higher loads (120–140% 1RM) are recommended, when using the mid-thigh clean pull.  相似文献   

11.
Abstract

The present study compared the changes in markers of muscle damage after bouts of resistance exercise employing the Multiple-sets (MS) and Half-pyramid (HP) training systems. Ten healthy men (26.1±6.3 years), who had been involved in regular resistance training, performed MS and HP bouts, 14 days apart, in a randomised, counter-balanced manner. For the MS bout, participants performed three sets of maximum repetitions at 75%-1RM (i.e. 75% of a One Repetition Maximum) for the three exercises, starting with the bench press, followed by pec deck and decline bench press. For the HP bout, the participants performed three sets of maximum repetitions with 67%-1RM, 74%-1RM and 80%-1RM for the first, second and third sets, respectively, for the same three exercise sequences as the MS bout. The total volume of load lifted was equated between both bouts. Muscle soreness, plasma creatine kinase (CK) activity, myoglobin (Mb) and C-reactive protein (CRP) concentrations were assessed before and for three days after each exercise bout, and the changes over time were compared between MS and HP using two-way repeated measures ANOVA. Muscle soreness developed significantly (P<0.01) after both bouts, but no significant difference was observed between MS and HP. Plasma CK activity and Mb concentration increased significantly (P<0.01) without significant differences between bouts, and CRP concentration did not change significantly after either bout. These results suggest that the muscle damage profile is similar for MS and HP, probably due to the similar total volume of load lifted.  相似文献   

12.
This study examined the influence of differing volume load and intensity (%1 repetition maximum[%1RM]) resistance exercise workouts on session rating of perceived exertion (sRPE) countermovement jump (CMJ) performance and endocrine responses. Twelve participants performed a workout comprising four exercises (bench press, back squat, deadlift and prone bench pull) in randomised order as either power (POW); 3 sets × 6 repetitions at 45%1RM × 3 min inter-set rest, strength (ST); 3 sets × 3 repetitions at 90%1RM × 3 min inter-set rest, or hypertrophy (HYP); 3 sets × 10 repetitions at 70%1RM × 1 min inter-set rest in a randomised-crossover design. CMJ performance and endocrine responses were measured immediately pre-, post-, 12, 24, 48 and 72 h post-exercise. POW sRPE (3.0 ± 1.0) was lower than ST (4.5 ± 1.0) (P = 0.01), and both were lower than HYP (8.5 ± 1.0) (P = 0.01). Duration of CMJ decrement was longer (P ≤ 0.05) for HYP (72 h) compared to POW (12 h) and ST (24 h). Testosterone concentration was greater (P ≤ 0.05) immediately post-exercise in HYP compared to POW and ST. In conclusion, less inter-set rest, greater volume load and intensity (%1RM) may increase sRPE, duration of CMJ performance decrement and testosterone responses in resistance exercise.  相似文献   

13.
This study aimed to compare the load-velocity and load-power relationships of three common variations of the squat exercise. 52 strength-trained males performed a progressive loading test up to the one-repetition maximum (1RM) in the full (F-SQ), parallel (P-SQ) and half (H-SQ) squat, conducted in random order on separate days. Bar velocity and vertical force were measured by means of a linear velocity transducer time-synchronized with a force platform. The relative load that maximized power output (Pmax) was analyzed using three outcome measures: mean concentric (MP), mean propulsive (MPP) and peak power (PP), while also including or excluding body mass in force calculations. 1RM was significantly different between exercises. Load-velocity and load-power relationships were significantly different between the F-SQ, P-SQ and H-SQ variations. Close relationships (R2 = 0.92–0.96) between load (%1RM) and bar velocity were found and they were specific for each squat variation, with faster velocities the greater the squat depth. Unlike the F-SQ and P-SQ, no sticking region was observed for the H-SQ when lifting high loads. The Pmax corresponded to a broad load range and was greatly influenced by how force output is calculated (including or excluding body mass) as well as the exact outcome variable used (MP, MPP, PP).  相似文献   

14.
The purpose of this study was to investigate whether using different focus affects electromyographic (EMG) amplitude and contraction duration during bench press performed at explosive and controlled speeds. Eighteen young male individuals were familiarized with the procedure and performed the one-maximum repetition (1RM) test in the first session. In the second session, participants performed the bench press exercise at 50% of the 1RM with 3 different attentional focuses (regular focus on moving the load vs contracting the pectoralis vs contracting the triceps) at 2 speed conditions (controlled vs maximal speed). During the controlled speed condition, focusing on using either the pectoralis or the triceps muscles increased pectoralis normalized EMG (nEMG) by 6% (95% CI 3–8%; p = 0.0001) and 4% nEMG (95% CI 1–7%; p = 0.0096), respectively, compared with the regular focus condition. Triceps activity was increased by 4% nEMG (95% CI 0–7%; p = 0.0308) at the controlled speed condition during the triceps focus. During the explosive speed condition, the use of different focuses had no effect. The different attentional focus resulted in comparable contraction duration for the measured muscles when the exercise was performed explosively. Using internal focus to increase EMG amplitude seems to function only during conditions of controlled speed.  相似文献   

15.
The aim of this study was to compare the effect of 6 weeks of resistance training to volitional failure at low (30% 1 repetition maximum (RM)) or high (80%1RM) loads on gains in muscle size and strength in young women. Thirteen women (age: 29.7 ± 4.7years; height 166.7 ± 6.4cm; weight 64.2 ± 12.2kg) completed 2 training sessions per week for 6 weeks and muscle strength (1RM), muscle thickness (ultrasound) were measured before and after training. Training comprised 1 set to volitional failure of unilateral leg extensions and bicep curls with each limb randomly assigned to train at either 80% 1RM or 30% 1RM. Increases in muscle thickness [arms: 6.81 ± 3.15% (30% 1RM), 5.90 ± 3.13% (80% 1RM) and legs: 9.37 ± 5.61% (30% 1RM), 9.13 ± 7.9% (80% 1RM)] and strength [arms: 15.4 ± 12.2% (30% 1RM), 18.26 ± 12.2% (80% 1RM) and legs: 25.30 ± 18.4 (30% 1RM), 27.20 ± 14.5 (80% 1RM)] were not different between loads. When resistance exercise is performed to volitional failure gains in muscle size and strength are independent of load in young women.  相似文献   

16.
The purpose of this study was to compare the power expressed during the bench press exercise in resistance-trained men following different pre-activation conditions. Twenty-two trained men (age 24.1?±?1.7 years, height 178.6?±?6.1?cm, body mass 81.1?±?10.6?kg) completed a maximal effort bench press (1-RM) test (100.0?kg?±?8.1?kg). In a subsequent assessment, each participant performed concentric bench press movements with loads of 20%, 30%, 40% and 50% of their 1-RM preceded by either a concentric contraction (CC), a low isometric preload (LIP; 70% 1-RM) or a high isometric preload (HIP; 100% 1-RM) conditions. All movements were performed in a Smith machine with a settable quick-release device. Participants performed all three conditions in randomized fashion. Results indicated that power outputs during the bench press exercise following HIP were significantly (p?<?0.05) greater than CC at 20% 1-RM (+9%), 30% 1-RM (+16%) and 40% 1-RM (+14%), and LIP at 20% 1-RM (+4%), 30% 1-RM (+20%) and 40% 1-RM (+15%). No differences were found between conditions at 50% 1-RM. Area under the force–power curve with HIP was greater (p?<?0.05) than with CC and LIP. In conclusion, results of this study indicate that the use of a HIP (100% 1-RM) in trained participants results in significantly greater power output during the concentric phase of a multi-joint exercise when compared to standard concentric movement.  相似文献   

17.
Abstract

The purpose of this study was to examine the relationships among mechanomyographic (MMG) amplitude, power output, and bar velocity during the free-weight bench press exercise. Twenty-one resistance-trained men [one-repetition maximum (1-RM) bench press = 125.4 ± 18.4 kg] performed bench press muscle actions as explosively as possible from 10% to 90% of the 1-RM while peak power output and peak bar velocity were assessed with a TENDO Weightlifting Analyzer. During each muscle action, surface MMG signals were detected from the right and left pectoralis major and triceps brachii, and the concentric portion of the range of motion was selected for analysis. Results indicated that power output increased from 10% to 50% 1-RM, followed by decreases from 50% to 90% 1-RM, but MMG amplitude for each of the muscles increased from 10 to 80%1-RM. The results of this study indicate that during the free-weight bench press exercise, MMG amplitude was not related to power output, but was inversely related to bar velocity and directly related to the external load being lifted. In future research, coaches and sport scientists may be able to estimate force/torque production from individual muscles during multi-joint, dynamic constant external resistance muscle actions.  相似文献   

18.
We sought to determine the sex-specific effects of an acute bout of free-weight resistance exercise (RE) on pulse wave reflection (aortic blood pressures, augmentation index (AIx), AIx at 75?bpm (AIx@75), augmentation pressure (AP), time of the reflected wave (Tr), subendocardial viability ratio (SEVR)), and aortic arterial stiffness in resistance-trained individuals. Resistance-trained men (n?=?14) and women (n?=?12) volunteered to participate in the study. Measurements were taken in the supine position at rest, and 10 minutes after 3 sets of 10 repetitions at 75% 1-repetition maximum on the squat, bench press, and deadlift. A 2?×?2?×?2 ANOVA was used to analyse the effects of sex (men, women) across condition (RE, control) and time (rest, recovery). There were no differences between sexes across conditions and time. There was no effect of the RE on brachial or aortic blood pressures. There were significant condition?×?time interactions for AIx (rest: 12.1?±?7.9%; recovery: 19.9?±?10.5%, p?=?.003), AIx@75 (rest: 5.3?±?7.9%; recovery: 24.5?±?14.3%, p?=?.0001), AP (rest: 4.9?±?2.8?mmHg; recovery: 8.3?±?6.0?mmHg, p?=?.004), and aortic arterial stiffness (rest: 5.3?±?0.6?ms; recovery: 5.9?±?0.7?ms, p?=?.02) with significant increases during recovery from the acute RE. There was also a significant condition?×?time for time of the reflected wave (rest: 150?±?7?ms; recovery: 147?±?9?ms, p?=?.02) and SEVR (rest: 147?±?17%; recovery: 83?±?24%, p?=?.0001) such that they were reduced during recovery from the acute RE compared to the control. These data suggest that an acute bout of RE increases AIx, AIx@75, and aortic arterial stiffness similarly between men and women without significantly altering aortic blood pressures.  相似文献   

19.
A popular method to improve athletic performance and lower body power is to train with wearable resistance (WR), for example, weighted vests. However, it is currently unknown what training effect this loading method has on full-body explosive movements such as the power clean. The purpose of this study was to determine what effects WR equivalent to 12% body mass (BM) had on the power clean and countermovement jump (CMJ) performance. Sixteen male subjects (age: 23.2?±?2.7 years; BM: 90.5?±?10.3?kg) were randomly assigned to five weeks of traditional (TR) power clean training or training with 12% BM redistributed from the bar to the body using WR. Variables of interest included pre and post CMJ height, power clean one repetition maximum (1RM), peak ground reaction force, power output (PO), and several bar path kinematic variables across loads at 50%, 70%, and 90% of 1RM. The main findings were that WR training: (1) increased CMJ height (8.7%; ES?=?0.53) and 1RM power clean (4.2%; ES?=?0.2) as compared to the TR group (CMJ height?=??1.4%; 1RM power clean?=?1.8%); (2) increased PO across all 1RM loads (ES?=?0.33–0.62); (3) increased barbell velocity at 90% 1RM (3.5%; ES?=?0.74) as compared to the TR group (?4.3%); and (4) several bar path kinematic variables improved at 70% and 90% 1RM loads. WR power clean training with 12% BM can positively influence power clean ability and CMJ performance, as well as improve technique factors.  相似文献   

20.
The aim of the study was to compare the effect of resistance training (RT) frequencies of five times (RT5), thrice- (RT3) or twice- (RT2) weekly in muscle strength and hypertrophy in young men. Were used a within-subjects design in which 20 participants had one leg randomly assigned to RT5 and the other to RT3 or to RT2. 1?RM and muscle cross-sectional area (CSA) were assessed at baseline, after four (W4) and eight (W8) RT weeks. RT5 resulted in greater total training volume (TTV) than RT3 and RT2 (P?=?.001). 1?RM increased similarly between protocols at W4 (RT5: 55?±?9?Kg, effect size (ES): 1.18; RT3: 51?±?11?Kg, ES: 0.80; RT2: 54?±?7?Kg, ES: 1.13; P?P?2, ES: 0.54; RT3: 22.0?±?4.6?cm2, ES: 0.19; RT2: ES: 0.25; 23.8?±?3.8?cm2; P?2; ES: 0.69; RT3: 23.6?±?4.2?cm2, ES: 0.58; RT2: 25.5?±?3.7?cm2; ES: 0.70; P?2; RT3: 21.2?±?4.0?cm2; RT2: 22.9?±?3.8?cm2). Performing RT5, RT3 and RT2 a week result in similar muscle strength increase and hypertrophy, despite higher TTV for RT5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号