首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
ABSTRACT

This study aimed to compare the reliability and magnitude of velocity variables between 3 variants of the bench press (BP) exercise in participants with and without BP training experience. Thirty males, 15 with and 15 without BP experience, randomly performed 3 variants of the BP on separate sessions: (I) concentric-only, (II) fast-eccentric and (III) controlled-eccentric. The mean velocity (MV) and maximum velocity (Vmax) of the concentric phase were collected against 3 loads (≈30%1RM, 50%1RM, and 75%1RM) with a linear velocity transducer. Reliability was high regardless of the variable, BP variant, and load (coefficient of variation [CV] ≤ 4.47%, intraclass correlation coefficient [ICC] ≥ 0.87). The comparison of the CVs suggested a higher reliability for the fast-eccentric BP (8 out of 12 comparisons), followed by the concentric-only BP (5 out of 12 comparisons), and finally the controlled-eccentric BP (never provided a higher reliability). No differences in reliability were observed between experienced (CV ≤ 4.71%; ICC ≥ 0.79) and non-experienced (CV ≤ 6.29%; ICC ≥ 0.76) participants. The fast-eccentric BP provided the highest MV (p < 0.05) and no differences were observed for Vmax. These results support the assessment of movement velocity during the fast-eccentric BP even in participants without experience.  相似文献   

2.
Understanding how loading affects power production in resistance training is a key step in identifying the most optimal way of training muscular power – an essential trait in most sporting movements. Twelve elite male sailors with extensive strength-training experience participated in a comparison of kinematics and kinetics from the upper body musculature, with upper body push (bench press) and pull (bench pull) movements performed across loads of 10–100% of one repetition maximum (1RM). 1RM strength and force were shown to be greater in the bench press, while velocity and power outputs were greater for the bench pull across the range of loads. While power output was at a similar level for the two movements at a low load (10% 1RM), significantly greater power outputs were observed for the bench pull in comparison to the bench press with increased load. Power output (P max) was maximized at higher relative loads for both mean and peak power in the bench pull (78.6 ± 5.7% and 70.4 ± 5.4% of 1RM) compared to the bench press (53.3 ± 1.7% and 49.7 ± 4.4% of 1RM). Findings can most likely be attributed to differences in muscle architecture, which may have training implications for these muscles.  相似文献   

3.
ABSTRACT

The velocity and magnitude in which the eccentric phase of an exercise is completed directly affects performance during the concentric phase. Therefore, the purpose of this research was to investigate the effects of eccentric phase duration on concentric outcomes at 60% and 80% of one-repetition maximum (1RM) in the squat and bench press. Sixteen college-aged, resistance-trained males completed 1RM testing, established normative eccentric durations, and performed fast (0.75 times normative) and slow (2.0 times normative) metronome-controlled eccentric duration repetitions. Outcome measures assessed during the concentric phase were: average concentric velocity (ACV), peak concentric velocity (PCV), rating of perceived exertion (RPE), range of motion (ROM), and barbell path. Eccentric duration was significantly and inversely correlated with ACV at 60% (r = ?0.408, p = 0.004) and 80% (r = ?0.477, p = 0.001) of 1RM squat. At 60% of 1RM squat, both fast and slow eccentric conditions produced greater (p < 0.001) PCV than normative duration with fast also producing greater PCV than slow (p = 0.044). Eccentric duration had no impact on RPE, ROM, or barbell path. Our results report for the first time that resistance-trained males performing a deliberately faster eccentric phase may enhance their own squat and bench press performance.  相似文献   

4.
Power is a fundamental component for many sporting activities; while the load that elicits peak power during different exercises and differences between sexes remains unclear. This study aims to determine the effect of sex and load on kinematic and kinetic variables during the mid-thigh clean pull. Men (n = 10) and women (n = 10) performed the mid-thigh clean pull at intensities of 40%, 60%, 80%, 100%, 120%, and 140% of one repetition maximum (1RM) power clean in a randomised and counter-balanced order, while assessing bar velocity, bar displacement, power, force, and impulse. Two-way analysis of variance revealed that men demonstrated significantly greater (p < 0.05) values for all variables across loads, excluding bar velocity. Men demonstrated significantly greater (p < 0.05) bar velocities with 40–80% 1RM; in contrast, women demonstrated significantly (p < 0.05) higher velocities with 120–140% 1RM. Irrespective of sex significantly greater (p < 0.05), system peak power, bar velocity, and displacement occurred with 40% 1RM. In contrast, peak force and impulse were significantly (p < 0.05) greater with 140% 1RM. When performing the mid-thigh clean pull, to maximise system power or bar velocity, lower loads (40–60% 1RM) are recommended. When training force production or impulse, higher loads (120–140% 1RM) are recommended, when using the mid-thigh clean pull.  相似文献   

5.
This study aimed at testing whether there are mean propulsive velocities (MPVs) capable of maximising the mean propulsive power (MPP) during the execution of bench press (BP), bench throw (BT), half squat (HS) and jump squat (JS). Additionally, we assessed the differences in MPP/MPV between ballistic and traditional exercises. Seventeen male rugby sevens players performed MPP tests in BP, BT, HS and JS and maximum isometric force (MIF) tests in HS and BP. The JS presented higher MPP (977.4 ± 156.2 W) than the HS (897.9 ± 157.7 W) (< 0.05); the BP (743.4 ± 100.1 W) presented higher MPP than the BT (697.8 ± 70.4 W) (< 0.05). Ballistic exercises presented higher optimum MPV (JS = 1.02 ± 0.07 m·s?1; BT = 1.67 ± 0.15 m·s?1) than traditional exercises (HS = 0.93 ± 0.08 m·s?1; BP = 1.40 ± 0.13 m·s?1) (< 0.05). The optimum MPP in the JS, BT, HS and BP occurred at 28.2 ± 5.79, 23.3 ± 4.24, 32.4 ± 9.46 and 27.7 ± 5.33% of the MIF, respectively. The coefficient of variation (CV) of MPV at optimum MPP ranged from 7.4% to 9.7%, while the CV of %MIF ranged from 18.2% to 29.2%. The MPV is a more precise indicator of the optimum loads than the percentages of MIF due to its low inter-subject variability as expressed by CV. Therefore, MPV can be used to determine the optimum power load in the four investigated exercises.  相似文献   

6.
This study compared the functional and neural effects of two strength training programmes differing in set configuration. Thirteen participants performed 10 sessions, over a period of 5 weeks, of unilateral leg extensions with different set configurations but with identical work-to-rest ratios for each limb: a traditional configuration (4 sets of 8 repetitions, 10RM load, 3-min pause between sets) and an inter-repetition rest configuration (32 repetitions, 10RM load, 17.4 s of rest between each repetition). Mean propulsive velocity of the traditional sessions was lower than for inter-repetition rest sessions (0.48 ± 0.06 vs. 0.54 ± 0.06 m · s?1; P < 0.001), while perceived exertion was higher (8.3 ± 0.9 and 6.56 ± 1.6 for traditional training and IRT; P = 0.002). One repetition maximum (RM), work with 10RM load, maximum mean propulsive power, maximum voluntary contraction and time to failure with 50% of maximum isometric force improved similarly in both legs (time effect, P < 0.001; effect size range, 0.451–1.190). Time and set configuration did not show significant main effects or interactions for cortical adaptations (motor-evoked potentials, short-interval intracortical inhibition, intracortical facilitation). There were no significant correlations between changes in cortical and peripheral neural adaptations and strength improvement. In conclusion, inter-repetition rest configuration was as effective as traditional training in improving muscle performance.  相似文献   

7.
ABSTRACT

This study aimed to compare the goodness of fit and the reliability of different regression models for fitting the force-velocity relationship (FV) of bench press (BP) and squat (SQ). Additionally, the reliability of the position on FV of the velocity (V1RM) and the force performed with the 1RM (F1RM) was explored. Nine rugby players and 12 judokas participated in this study. The FV of BP and SQ were obtained twice by a protocol performed until the 1RM. Individual FV were fitted by linear (LM), quadratic polynomial (PM), and exponential models (EM). Adjusted coefficients of determination of LM and PM (medians higher than 0.919) were higher than for EM. The reliability was higher for LM in comparison with PM. The reliability of V1RM was not acceptable (CV% = 19 and 18% for BP and SQ). High reliability was observed for F1RM (CV% = 3 and 2% for BP and SQ) and for the ratio between F1RM and the force-axis intercept of FV (CV% = 2 and 4% for BP and SQ). The reliability of the relative values of F1RM around 92 and 87% of F0 for BP and SQ suggests the use of these values for monitoring resistance training programmes.  相似文献   

8.
ABSTRACT

This study examined the reliability and validity of three methods of estimating the one-repetition maximum (1RM) during the free-weight prone bench pull exercise. Twenty-six men (22 rowers and four weightlifters) performed an incremental loading test until reaching their 1RM, followed by a set of repetitions-to-failure. Eighteen participants were re-tested to conduct the reliability analysis. The 1RM was estimated through the lifts-to-failure equations proposed by Lombardi and O’Connor, general load-velocity (L-V) relationships proposed by Sánchez-Medina and Loturco and the individual L-V relationships modelled using four (multiple-point method) or only two loads (two-point method). The direct method provided the highest reliability (coefficient of variation [CV] = 2.45% and intraclass correlation coefficient [ICC] = 0.97), followed by the Lombardi’s equation (CV = 3.44% and ICC = 0.94), and no meaningful differences were observed between the remaining methods (CV range = 4.95–6.89% and ICC range = 0.81–0.91). The lifts-to-failure equations overestimated the 1RM (3.43–4.08%), the general L-V relationship proposed by Sánchez-Medina underestimated the 1RM (?3.77%), and no significant differences were observed for the remaining prediction methods (?0.40–0.86%). The individual L-V relationship could be recommended as the most accurate method for predicting the 1RM during the free-weight prone bench pull exercise.  相似文献   

9.
This study examined the impact of load on lower body performance variables during the hang power clean. Fourteen men performed the hang power clean at loads of 30%, 45%, 65%, and 80% 1RM. Peak force, velocity, power, force at peak power, velocity at peak power, and rate of force development were compared at each load. The greatest peak force occurred at 80% 1RM. Peak force at 30% 1RM was statistically lower than peak force at 45% (p = 0.022), 65% (p = 0.010), and 80% 1RM (p = 0.018). Force at peak power at 65% and 80% 1RM was statistically greater than force at peak power at 30% (p < 0.01) and 45% 1RM (p < 0.01). The greatest rate of force development occurred at 30% 1RM, but was not statistically different from the rate of force development at 45%, 65%, and 80% 1RM. The rate of force development at 65% 1RM was statistically greater than the rate of force development at 80% 1RM (p = 0.035). No other statistical differences existed in any variable existed. Changes in load affected the peak force, force at peak power, and rate of force development, but not the peak velocity, power, or velocity at peak power.  相似文献   

10.
ABSTRACT

This project examined the interrelationships between power production and upper body kinematics during a series of medicine ball push-press (MBP-P) throws. Twenty-five regular weight trainers (body mass = 86 ± 10 kg) performed a series of ballistic vertical MBP-P throws at loads representing 5% and 10% of their assessed 5RM bench press. Throws were performed lying supine on a force platform (1 kHz) with upper body kinematics assessed using standard infra-red motion capture techniques (0.5 kHz). Gross measures of performance and power production such as peak vertical ball velocity (Velpeak), peak force (Fpeak) and power (Ppeak) were recorded during the propulsive phase of the movement. Comparative analyses indicated that despite significant reductions in Velpeak from the 5% to 10% loads (P < 0.001), Fpeak remained largely unchanged (P = 0.167). Analysis of inter-trial variability showed that the gross measures of performance and power were relatively stable (Coefficient of Variation [CV%] <13%), while most upper limb segmental kinematics varied considerably between trials (CV% up to 70%). This project highlights the complexity of the relationships between power production and upper body kinematics during light load ballistic MBP-P throwing. Additionally, it shows how trained athletes can achieve similar outcomes during ballistic movements using a variety of movement strategies.  相似文献   

11.
Abstract

This study analysed the effect of imposing a pause between the eccentric and concentric phases on the biological within-subject variation of velocity- and power–load isoinertial assessments. Seventeen resistance-trained athletes undertook a progressive loading test in the bench press (BP) and squat (SQ) exercises. Two trials at each load up to the one-repetition maximum (1RM) were performed using 2 techniques executed in random order: with (stop) and without (standard) a 2-s pause between the eccentric and concentric phases of each repetition. The stop technique resulted in a significantly lower coefficient of variation for the whole load–velocity relationship compared to the standard one, in both BP (2.9% vs. 4.1%; P = 0.02) and SQ (2.9% vs. 3.9%; P = 0.01). Test–retest intraclass correlation coefficients (ICCs) were r = 0.61–0.98 for the standard and r = 0.76–0.98 for the stop technique. Bland–Altman analysis showed that the error associated with the standard technique was 37.9% (BP) and 57.5% higher (SQ) than that associated with the stop technique. The biological within-subject variation is significantly reduced when a pause is imposed between the eccentric and concentric phases. Other relevant variables associated to the load–velocity and load–power relationships such as the contribution of the propulsive phase and the load that maximises power output remained basically unchanged.  相似文献   

12.
Abstract

The purpose of this study was to examine the relationships among mechanomyographic (MMG) amplitude, power output, and bar velocity during the free-weight bench press exercise. Twenty-one resistance-trained men [one-repetition maximum (1-RM) bench press = 125.4 ± 18.4 kg] performed bench press muscle actions as explosively as possible from 10% to 90% of the 1-RM while peak power output and peak bar velocity were assessed with a TENDO Weightlifting Analyzer. During each muscle action, surface MMG signals were detected from the right and left pectoralis major and triceps brachii, and the concentric portion of the range of motion was selected for analysis. Results indicated that power output increased from 10% to 50% 1-RM, followed by decreases from 50% to 90% 1-RM, but MMG amplitude for each of the muscles increased from 10 to 80%1-RM. The results of this study indicate that during the free-weight bench press exercise, MMG amplitude was not related to power output, but was inversely related to bar velocity and directly related to the external load being lifted. In future research, coaches and sport scientists may be able to estimate force/torque production from individual muscles during multi-joint, dynamic constant external resistance muscle actions.  相似文献   

13.
This study determined whether backward grinding performance in America's Cup sailing could be improved using a training intervention to increase power capability in the upper-body pull movement. Fourteen elite male sailors (34.9 ± 5.9 years; 98.1 ± 14.4 kg; 186.6 ± 7.7 cm) were allocated into experimental (speed-focussed) and control groups. Grinding performance was assessed using a grinding ergometer and an instrumented Smith machine measured force, velocity and power during the bench pull exercise. Conventional training produced significant improvements in bench pull 1 RM (5.2 ± 4.0%; p = 0.016) and maximum force production (5.4 ± 4.0%; p = 0.014). Speed-focussed training improved maximum power (7.8 ± 4.9%; p = 0.009), power at 1RM (10.3 ± 8.9%; p = 0.019) and maximum velocity (8.4 ± 2.6%; p = 0.0002). Backward grinding performance showed greater improvements in the experimental group than the control group for moderate (+1.8%) and heavy load (+6.0%) grinding. Changes in maximum power output and power at 1 RM had large correlations (r = 0.56–0.61) with changes in both moderate and heavy load grinding performance. Time to peak force had the strongest relationship, explaining 70% of the change in heavy load grinding performance. Although the performance benefit was not entirely clear the likelihood of a detrimental effect was low ( < 5%) and therefore implementation could be recommended.  相似文献   

14.
The purpose of this study was to investigate the relationship between movement velocity and relative load in three lower limbs exercises commonly used to develop strength: leg press, full squat and half squat. The percentage of one repetition maximum (%1RM) has typically been used as the main parameter to control resistance training; however, more recent research has proposed movement velocity as an alternative. Fifteen participants performed a load progression with a range of loads until they reached their 1RM. Maximum instantaneous velocity (Vmax) and mean propulsive velocity (MPV) of the knee extension phase of each exercise were assessed. For all exercises, a strong relationship between Vmax and the %1RM was found: leg press (r2adj = 0.96; 95% CI for slope is [?0.0244, ?0.0258], P < 0.0001), full squat (r2adj = 0.94; 95% CI for slope is [?0.0144, ?0.0139], P < 0.0001) and half squat (r2adj = 0.97; 95% CI for slope is [?0.0135, ?0.00143], P < 0.0001); for MPV, leg press (r2adj = 0.96; 95% CI for slope is [?0.0169, ?0.0175], P < 0.0001, full squat (r2adj = 0.95; 95% CI for slope is [?0.0136, ?0.0128], P < 0.0001) and half squat (r2adj = 0.96; 95% CI for slope is [?0.0116, 0.0124], P < 0.0001). The 1RM was attained with a MPV and Vmax of 0.21 ± 0.06 m s?1 and 0.63 ± 0.15 m s?1, 0.29 ± 0.05 m s?1 and 0.89 ± 0.17 m s?1, 0.33 ± 0.05 m s?1 and 0.95 ± 0.13 m s?1 for leg press, full squat and half squat, respectively. Results indicate that it is possible to determine an exercise-specific %1RM by measuring movement velocity for that exercise.  相似文献   

15.
The purpose of this study was to investigate whether using different focus affects electromyographic (EMG) amplitude and contraction duration during bench press performed at explosive and controlled speeds. Eighteen young male individuals were familiarized with the procedure and performed the one-maximum repetition (1RM) test in the first session. In the second session, participants performed the bench press exercise at 50% of the 1RM with 3 different attentional focuses (regular focus on moving the load vs contracting the pectoralis vs contracting the triceps) at 2 speed conditions (controlled vs maximal speed). During the controlled speed condition, focusing on using either the pectoralis or the triceps muscles increased pectoralis normalized EMG (nEMG) by 6% (95% CI 3–8%; p = 0.0001) and 4% nEMG (95% CI 1–7%; p = 0.0096), respectively, compared with the regular focus condition. Triceps activity was increased by 4% nEMG (95% CI 0–7%; p = 0.0308) at the controlled speed condition during the triceps focus. During the explosive speed condition, the use of different focuses had no effect. The different attentional focus resulted in comparable contraction duration for the measured muscles when the exercise was performed explosively. Using internal focus to increase EMG amplitude seems to function only during conditions of controlled speed.  相似文献   

16.
The purpose of this study was to quantify the inter-session reliability of force–velocity–power profiling and estimated maximal strength in youth. Thirty-six males (11–15 years old) performed a ballistic supine leg press test at five randomized loads (80%, 100%, 120%, 140%, and 160% body mass) on three separate occasions. Peak and mean force, power, velocity, and peak displacement were collected with a linear position transducer attached to the weight stack. Mean values at each load were used to calculate different regression lines and estimate maximal strength, force, velocity, and power. All variables were found reliable (change in the mean [CIM] = ? 1 to 14%; coefficient of variation [CV] = 3–18%; intraclass correlation coefficient [ICC] = 0.74–0.99), but were likely to benefit from a familiarization, apart from the unreliable maximal force/velocity ratio (CIM = 0–3%; CV = 23–25%; ICC = 0.35–0.54) and load at maximal power (CIM = ? 1 to 2%; CV = 10–13%; ICC = 0.26–0.61). Isoinertial force–velocity–power profiling and maximal strength in youth can be assessed after a familiarization session. Such profiling may provide valuable insight into neuromuscular capabilities during growth and maturation and may be used to monitor specific training adaptations.  相似文献   

17.
This study aimed to determine the suitability of the load-velocity relationship to prescribe the relative load (%1RM) in women, as well as to compare the load-velocity profile between sexes and participants with different strength levels. The load-velocity relationship of 14 men (1RM: 1.17 ± 0.19) and 14 women (1RM: 0.66 ± 0.13) were evaluated in the bench press exercise. The main findings revealed that: (I) the load-velocity relationship was always strong and linear (R2 range: 0.987–0.993), (II) a steeper load-velocity profile was observed in men compared to women (Effect size [ES]: 1.09), with men showing higher velocities for light loads (ES: ? 0.81 and ? 0.40 for the y-intercept and 30%1RM, respectively), but women reporting higher velocities for the heavy loads (ES: 1.14 and 1.50 at 90%1RM and 100%1RM, respectively); and (III) while the slope of the load-velocity profile was moderately steeper for weak men compared to their strong counterpart (ES: 1.02), small differences were observed between strong and weak women (ES: ? 0.39). While these results support the use of the individual load-velocity relationship to prescribe the %1RM in the bench press exercise for women, they also highlight the large disparities in their load-velocity profile compared to men.  相似文献   

18.
Abstract

The objective of this study was to examine the chronic effects on strength and power of performing complex versus traditional set training over eight weeks. Fifteen trained males were assessed for throw height, peak velocity, and peak power in the bench press throw and one-repetition maximum (1-RM) in the bench press and bench pull exercises, before and after the eight-week programme. The traditional set group performed the pulling before the pushing exercise sets, whereas the complex set group alternated pulling and pushing sets. The complex set training sessions were completed in approximately half the time. Electromyographic (EMG) activity was monitored during both test sessions in an attempt to determine if it was affected as a result of the training programme. Although there were no differences in the dependent variables between the two conditions, bench pull and bench press 1-RM increased significantly under the complex set condition and peak power increased significantly under the traditional set condition. Effect size statistics suggested that the complex set was more time-efficient than the traditional set condition with respect to development of 1-RM bench pull and bench press, peak velocity and peak power. The EMG activity was not affected. Complex set training would appear to be an effective method of exercise with respect to efficiency and strength development.  相似文献   

19.
This study investigated the validity and reliability of the GymAware PowerTool (GPT). Thirteen resistance trained participants completed three visits, consisting of three repetitions of free-weight back squat, bench press, deadlift (80% one repetition maximum), and countermovement jump. Bar displacement, peak and mean velocity, peak and mean force, and jump height were calculated using the GPT, a three-dimensional motion capture system (Motion Analysis Corporation; 150 Hz), and a force plate (Kistler; 1500 Hz). Least products regression were used to compare agreeability between devices. A within-trial one-way ANOVA, typical error (TE; %), and smallest worthwhile change (SWC) were used to assess reliability. Regression analysis resulted in R2 values of >0.85 for all variables excluding deadlift mean velocity (R2 = 0.54–0.69). Significant differences were observed between visits 3-2 for bench press bar displacement (0.395 ± 0.055 m; 0.383 ± 0.053 m), and deadlift bar displacement (0.557 ± 0.034 m; 0.568 ± 0.034 m). No other significant differences were found. Low to moderate TE (0.6–8.8%) were found for all variables, with SWC ranging 1.7–7.4%. The data provides evidence that the GPT can be used to measure kinetic and kinematic outputs, however, care should be taken when monitoring deadlift performance.  相似文献   

20.
Abstract

The aims of this study were to (1) investigate the influence of general anthropometric variables, handball-specific anthropometric variables, and upper-limb power and strength on ball-throwing velocity in a standing position (νball), and (2) predict this velocity using multiple regression methods. Forty-two skilled male handball players (age 21.0 ± 3.0 years; height = 1.81 ± 0.07 m; body mass = 78.3 ± 11.3 kg) participated in the study. We measured general anthropometric variables (height, body mass, lean mass, body mass index) and handball-specific anthropometric parameters (hand size, arm span). Upper-limb dynamic strength was assessed using a medicine ball (2 kg) throwing test, and power using a one-repetition maximum bench-press test. All the variables studied were correlated with ball velocity. Medicine ball throwing performance was the best predictor (r = 0.80). General anthropometric variables were better predictors (r = 0.55–0.70) than handball-specific anthropometric variables (r = 0.35–0.51). The best multiple regression model accounted for 74% of the total variance and included body mass, medicine ball throwing performance, and power output in the 20-kg bench press. The equation formulated could help trainers, athletes, and professionals detect future talent and test athletes' current fitness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号