首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 437 毫秒
1.
辽东楤木对过度训练大鼠心肌线粒体游离钙的影响   总被引:3,自引:0,他引:3  
目的:通过建立大鼠过度训练模型.探讨辽东楤木对过度训练大鼠心肌线粒体游离钙的影响及其机制。方法:雄性Wistar大鼠,随机分为3组:安静组,单纯运动组,楤木加运动组,运动模式为6周递增负荷游泳,期间给相应组大鼠服用辽东楤木提取物,最后一次运动后24h取样测定各组大鼠心肌线粒体MDA、SOD、Ca2^+-Mg^2+-ATP酶和游离钙等指标。结果:经过6周递增负荷训练,单纯运动组大鼠运动能力下降,心肌线粒体MDA含量显著增高(P〈0.01),游离钙、SOD、Ca^2+-Mg^2+-ATP酶的活性显著下降(P〈0.01);训练同时服用辽东楤木提取物的大鼠运动能力较运动组有所提高,楤木组心肌线粒体MDA低于运动组,但无明显差异,SOD、Ca^2+-Mg^2+-ATP酶的活性明显高于运动组(R=0.05),游离钙显著高于运动组(P〈0.01)。结论:经过6周递增负荷训练,单纯运动组大鼠呈过度训练状态,心肌线粒体自由基生成增多,抗氧化酶活性下降,导致线粒体膜发生脂质过氧化,Ca^2+-Mg^2+-ATP酶活性下降,线粒体内游离钙下降,影响线粒体的氧化磷酸化过程;辽东楤木可通过提高抗氧化酶活性,改善过度训练心肌相对缺氧状态,减少自由基的生成而缓解线粒体的脂质过氧化和游离钙的下降,从整体上表现为加快大鼠疲劳的恢复,提高大鼠的运动能力,对预防过度训练起到一定的作用。  相似文献   

2.
跑台运动和营养补充对大鼠骨骼肌能量代谢酶的影响   总被引:6,自引:0,他引:6  
应用长期递增负荷跑台运动造成大鼠运动性贫血状态,并对其骨骼肌内某些能量代谢酶进行观察。雄性Wistar大鼠30只,随机、筛选分为3组:对照组(10只)、递增负荷跑台运动组(简称运动组,10只)、递增负荷跑台运动+营养补充组(简称运动+营养组,10只)。运动组和运动+营养组的跑台训练安排按照运动性贫血模型建立方法实施。研究表明,运动性贫血条件下,大鼠腓肠肌Mg^2+~ATP酶、Ca^2+-ATP酶和Ca^2+-Mg^2+。ATP酶指标结果显著低于正常对照组,LDH的活力显著高于对照组而低于运动+营养组,SDH的活力则没有表现出组间差异性。运动性贫血条件下,大鼠腓肠肌内ATP酶多数会发生显著性降低、LDH表现出显著性升高,表明运动性贫血发生时伴随着骨骼肌有氧代谢酶的活性下降和有氧代谢酶的活性升高,说明此种长期递增负荷跑台运动相对提高了机体利用无氧代谢的比例,而此营养补充对此种变化影响作用不明显,此变化的内部机理尚需进一步深入研究。  相似文献   

3.
有氧耐力训练大鼠定量运动后红细胞的氧化应激   总被引:1,自引:0,他引:1  
李敏  曹志发 《体育学刊》2006,13(4):50-52
为了解耐力训练大鼠进行一次定量运动后红细胞的运动氧化应激是否降低以及是否减轻了自由基对其的影响。将60只SD大鼠随机分为不训练组(C)、每次训练20 min组(T1)和每次训练40 min组(T2),训练组在跑台上以28 m/min的速度训练6周。取样前各组又随机分为安静组和定量运动组,测试大鼠红细胞中GPX、SOD及Na -K -ATP酶活性和MDA含量。结果发现定量运动后,未训练大鼠SOD、GPX活性及MDA含量升高,Na -K -ATP酶活性下降;20 min训练大鼠SOD及Na -K -ATP酶活性下降,MDA含量和GPX活性升高且变化程度较未训练大鼠小;40 min训练大鼠各指标变化不大。结果提示有氧耐力运动训练能降低定量运动后红细胞的氧化应激,减轻自由基对红细胞的损伤。  相似文献   

4.
低氧训练对大鼠心肌组织微血管生成的影响   总被引:2,自引:0,他引:2  
目的 研究不同的低氧训练模式大鼠心肌组织微血管的生成情况和变化规律,为低氧训练实践提供试验依据.方法 将健康雄性SD大鼠60只,按体重随机分为6组,每组10只.运动组采用10周递增负荷跑台运动训练,每周训练6天,运动量由第1周的速度为15 m/min、持续时间为25 min递增至第10周速度为28 m/min、持续时间为50 min,低氧训练组每周二、四、六在相当于海拔1 500 m的低氧环境中训练,一、三、五在常氧下训练.并且在低氧环境中居住,低氧环境由第1周相当于海拔1 800 m递增至第10周相当于海拔3 600 m.应用免疫组织化学、显微图象对CD34的阳性表达进行定性和定量分析.结果 CD34可较好标记心肌组织微血管,运动组与低氧训练组有丰富的微血管新生.结论 单纯低氧不能显著增加心肌组织的血管生成,运动能使心肌组织血管产生适应性变化,当低氧与运动两种因素同时介入,血管生成丰富.  相似文献   

5.
目的:研究补充FDP对递增运动负荷训练至力竭的运动性疲劳大鼠各时相心肌SOD、MDA、LDH 和CK的影响及其变化规律.方法:实验以SD大鼠为研究对象,测定其运动训练5周、力竭后即刻、力竭后6h、力竭后24h心肌中LDH、CK、SOD活性和MDA水平,安静对照组则测定其安静状态下上述相同的实验指标.结果:①中小强度运动训练5周后,FDP组心肌各指标与对照组相比没有显著性意义;②力竭后即刻及恢复各时相FDP组心肌CK和LDH活性均高于对照组;③力竭即刻及恢复各时相,FDP组心肌SOD活性和SOD/MDA的比值均显著高于对照组,MDA含量显著性低于运动对照组.结论:FDP能提高运动力竭后即刻及恢复期各时相心肌LDH、CK、SOD活性和SOD/MDA的比值,降低MDA的生成;说明FDP能促进心肌组织糖酵解,改善心肌的能量供应,提高抗脂质过氧化作用,对心肌细胞具有良好的保护作用.  相似文献   

6.
目的:通过研究低氧训练大鼠心肌组织中HIF-lα和血管内皮CD34的蛋白表达情况,来初步探讨HIF-lα在促进心肌组织血管形成中的作用.方法:将健康雄性SD大鼠60只,按体重随机分为6组,运动组采用10 周递增负荷跑台运动训练,每周训练6天,运动量由第1 周的速度为15m/min、持续时间为25min 递增至第10 周速度为28m/min、持续时间为50min,低练组每周二、四、六在相当于海拔1 500m 的低氧环境中训练,并且在低氧环境中居住,低氧程度由第1 周相当于海拔1 800m 递增至第10 周相当于海拔3 600m.应用免疫组织化学、显微图象对HIF-1和CD34的阳性表达进行定性和定量分析.结果:低氧状态下,HIF-lα有大量的蛋白表达,低氧复合运动,表达更多,而CD34 蛋白表达只发生在常氧运动组和低氧训练组.结论: HIF-lα是促进心肌组织血管新生的一种重要因子,但须结合运动才能产生积极的作用.  相似文献   

7.
目的:探讨在海拔2260m高原低氧环境下对大鼠进行跑台递增负荷训练后,辅以不同增压氧恢复手段对大鼠力竭运动能力的影响.方法:6组(每组8只)雌性Wistar大鼠进行持续6天的跑台递增负荷训练,其中F组和G组在模拟海拔4500m高度下进行跑台训练,训练后即刻辅以不同模式的增压氧恢复手段,第7天进行力竭运动并记录运动时间.结果:施加不同增压氧辅助手段后C组、D组、E组和G组大鼠的力竭运动能力好于未进行增压氧辅助手段的B组和F组,与F组相比差异显著(P<0.05),并以0.2MPa/h加压方式对于提高大鼠抗缺氧和抗疲劳能力的效果明显.结论:采用不同增压辅助恢复手段可有效提高大鼠的抗疲劳能力,进而提高运动能力,并以0.2MPa/h增压辅助手段效果最为明显,但针对人体有明显抗疲劳、抗缺氧效果的增压强度和时间模式尚需进一步研究.  相似文献   

8.
采用递增负荷跑台训练对大鼠运动前、运动中、运动后即刻、6h和24h肝组织MDA含量、SOD及LDH活性进行测定,结果表明:运动5周时,无论给药组或空白对照组,大鼠肝组织MDA含量均有所下降,SOD活性均有所上升,LDH活性给药组大鼠肝组织略有上升,空白对照组略有下降,但与运动前比都无显著性差异(P>0 05);运动后即刻,无论给药组或空白对照组,大鼠肝组织MDA含量、SOD和LDH活性均明显高于运动前水平,随后,均继续增高,在运动后恢复6小时左右均达到较高点,后逐渐降低,至运动后恢复24h仍未恢复到运动前水平。结果提示,腹腔注射FDP能在一定程度上减轻自由基对运动性疲劳大鼠肝组织的氧化损伤作用,减少乳酸的堆积,这对延缓疲劳的出现和加速疲劳的消除有积极作用。  相似文献   

9.
目的:观察大鼠在过度训练状态下骨骼肌糖代谢的变化,探讨过度训练对糖代谢的影响。方法:将SD大鼠随机分为对照组(7只,Con)、运动组(8只,Mtr)和过度训练组(9只,Otr),进行9周跑台训练,其中Otr组后3周为力竭性运动。运动后分别测定骨骼肌糖原含量,LDH、PK、SDH、SOD酶的活性及MDA浓度,电镜观察肌组织的变化。结果:Otr组肌糖原含量较Mtr组降低,各种酶活性受到不同程度的抑制,MDA浓度升高,线粒体水肿,呈空泡状。结论:大鼠连续力竭性运动所致过度训练存在骨骼肌糖代谢功能紊乱,其可能与力竭性运动引起的自由基损害有关。  相似文献   

10.
模拟不同海拔高度低氧训练对大鼠腓肠肌LDH和MDH活性的影响   总被引:10,自引:0,他引:10  
选用雄性SD大鼠,分16组,建立用低压氧舱模拟2000m、3000m、4000m、高原低氧环境动物训练模型,探讨不同高度低氧训练1周及返回平原复初12周对大鼠腓肠肌乳酸脱氢酶(LDH)和苹果酸脱氢酶(MDH)活性的影响。结果表明不同海拔高度1周训练后大鼠腓肠肌LDH活性没有显著性变化,而MDH活性有显著性提高,以3000m组提高幅度最大。返回平原后3000m、4000m组第1周腓肠肌MDH活性下降,第2周显著性回升,而2000m组大鼠腓肠肌MDH活性变化最稳定且活性最高,实验支持高原训练高度在2000m至3000m之间的观点,并认为在2000m高度训练可承受较大运动负荷。  相似文献   

11.
目的:采用大鼠下坡跑运动损伤模型,研究离心力竭运动后不同时刻大鼠骨骼肌肌浆网Ca^2+-ATP酶活性的变化,探讨离心力竭运动所致骨骼肌超微结构损伤机制,为科学运动训练及运动恢复提供实验和理论依据。方法:雄性SD大鼠60只随机分为6组(每组10只):安静对照组、运动后即刻组、12h组、24h组、48h组和72h组,以速度16m/min,坡度-16°进行跑台运动,运动100min,休息5min,再运动100min,在不同时刻观察大鼠肱三头肌肌浆网Ca^2+-ATP酶活性的变化。结果:运动后即刻肌浆网Ca^2+-ATP酶活性与对照组相比显著下降(P〈0.01),随后开始恢复,运动后24h接近对照组水平(P〉0.05),运动后48h已完全恢复到对照组水平。结论:离心力竭运动后即刻大鼠肱三头肌肌浆网Ca^2+-ATP酶活性显著下降,随后逐渐恢复,运动后24h明显恢复,至48h已完全恢复,肌浆网Ca^2+-ATP酶活性的变化可以间接评定运动后骨骼肌的损伤。  相似文献   

12.
目的:观察不同持续时间低氧后训练对大鼠海马组织细胞凋亡的影响,探讨低氧训练对海马神经细胞凋亡的影响,为科学地指导运动员进行低氧训练提供实验依据.方法:雄性SD大鼠60只,随机分为6组,每组10只,正常对照组(A组),低氧8 h组(B组),低氧12h组(C组),训练对照组(D组),低氧 8 h 训练组(E组),低氧 12 h 训练组(F组).采用零坡度跑台的训练方式,对D、E和F 3组以25 m/min 的速度在常氧环境中每天训练1 h.将B、C、E和F组放人低氧舱内,氧浓度为 12.5%(相当于 4000 m 海拔高度),过8 h和12h后,分别将B、E组和c、F组取出放入正常氧浓度环境.训练共持续4周,每周5天.最后一次训练至力竭后 24 h 断头处死,取大鼠海马组织,测定Bax和BcI-2蛋白表达的阳性细胞个数和凋亡指数.研究结果显示:在低氧训练过程机体对低氧刺激的适应性改变,使得在停止运动后,海马组织的损害减小.随着低氧时间的延长,低氧训练使大鼠海马组织CA1区的细胞凋亡有减少的趋势,从而起到神经保护作用.  相似文献   

13.
为观察慢性低氧及训练对大鼠的影响,取健康SD大鼠28只,随机分成4组:(1)常氧对照组(NC),(2)常氧训练组(NT),(3)低氧安静组(HC),(4)低氧训练组(HT)。其中HC、HE两个低氧组每天保证22h生活在模拟4000m高原的低氧舱(氧浓度12 7%),NT、HT两个训练组则每天进行跑台训练1h。28天后,各组均于安静状态下宰杀、取血,测定血清一氧化氮(NO)含量及一氧化氮合酶(NOS)活力。结果可见:28天后,与对照组相比,低氧安静组(HC)和低氧训练组(HT)大鼠血清NO浓度有较显著的降低(P<0 10),而常氧训练组(NT)下降不显著;另一方面,慢性28天后,与常氧对照组(NC)相比,常氧训练组(NT)及低氧对照组(HC)NOS活性虽有上升,但差异不显著;低氧训练组(HT)NOS活性则明显低于NT组及HC组(P<0 05)(P<0 10),这说明低氧及运动两种因素的效应并非是简单的叠加,可能相互抵消。其机制有待进一步研究。  相似文献   

14.
低氧、耐力训练对大鼠代谢酶及肌球蛋白Ca-ATPase的影响   总被引:2,自引:1,他引:1  
目的:了解低氧及耐力练习对骨骼肌氧化酶、糖酵解酶和肌球蛋白Ca- ATPase的影响,从而间接判断低氧及耐力训练条件下肌肉收缩速度及耐力等特性的改变。方法:4 0只雄性SD鼠随意分成常氧安静组、常氧运动组、低氧安静组、低氧运动组;运动形式为跑台练习,跑台坡度12°,跑速2 2 m/ min,持续时间6 0 min/天;2 8天后测定琥珀酸脱氢酶、乳酸脱氢酶和肌球蛋白Ca- ATPase活性。结果:低氧两个组肌球蛋白Ca- ATPase活性均高于常氧安静组;低氧安静组比常氧安静组乳酸脱氢酶的活性增加;常氧耐力组、低氧安静组及低氧耐力组琥珀酸脱氢酶的活性均增加。结论:低氧可增加肌纤维收缩速度,同时增加氧化酶和糖酵解酶的活性;常氧和低氧耐力练习均增加氧化酶的活性。  相似文献   

15.
目的探讨"高住低练"过程中,运动员安静时血清酶的变化规律.方法20名运动员随机分为高住低练组和低住低练组,每组10名,分别测定运动员在此过程中安静状态下血清肌酸激酶(CK)、乳酸脱氢酶(LDH)和谷丙转氨酶(ALT)的活性.结果在高住低练的初期,运动员血清CK、LDH活性明显高于对照组,而高住低练4周后,血清酶活性则明显低于对照组,并可连续到高住低练后2周.结论提示运动员在2 500m高度进行4周高住低练,机体对缺氧负荷和运动负荷的适应后,能降低由于运动引起的血清酶活性的升高,对防止肌肉组织的损伤和增加细胞膜的稳定性有一定的作用.  相似文献   

16.
对大鼠采用不同海拔及组合模式的低氧暴露和运动方法,通过红细胞等指标探讨不同海拔高度下的低氧适应和机体氧传递能力。方法:9周龄wistar雄性大鼠80只(体重269.38±6.24g),分为非运动组和运动组两大组。每组分为0m、2200m、2200+3500m、3500m共4组,每小组10只。其中运动组大鼠每天在时速设定为20-22m/mim、坡度0°的跑台上训练90分钟,每周5天共6周。结果:3500m及以下的4种不同海拔高度下无论是低氧暴露还是运动,红系细胞RBC、 Hb、 Hct均表现随海拔的升高而升高,而运动组的升高幅度更为显著,同时2200+3500m组合式模式无论是运动组还是非运动组均出现了最高峰值。结论:在不同海拔环境下低氧是影响血细胞升高的重要因素,但低氧环境下复合运动负荷更能促进血细胞RBC、 Hb、 Hct生成,且2200+3500 m组合式模式更能有效的促进红系细胞生成量,从而更有利于提高机体氧传递能力和有氧能力。  相似文献   

17.
不同训练强度对间歇性缺氧大鼠骨骼肌NO和NOS的影响   总被引:6,自引:0,他引:6  
利用低氧舱技术模拟“高住低练”环境,观察间歇性缺氧条件和两种不同运动训练强度对骨骼肌NO和NOS的共同作用效应。SD雄性大鼠50只,随机分为6组:(1)常氧对照组(NC),(2)常氧低强度运动组(NEL),(3)常氧高强度运动组(NEH),(4)低氧对照组(HC),(5)低氧低强度运动组(HEL),(6)低氧高强度运动组(HEH)。低氧组每日20时至次日8时置于低氧舱中,其余时间置于常氧环境下。低氧舱氧浓度控制在14.7%,相当于海拔高度大约2800米。运动组每天在常氧环境中进行30分钟跑台训练,速度定为26.8米/分钟,低强度运动组坡度0度,高强度运动组坡度15度。9周后各组大鼠于安静状态进行宰杀,取股四头肌,匀浆进行NO含量和NOS活性检测。结果显示:常氧高强度运动组股四头肌NO水平与常氧对照组相比呈升高趋势并接近显著性水平(p=0.052)。低氧低运动强度组NO显著高于其他组,NOS变化组间比较均未达显著性水平。说明常氧条件下,高强度运动强度才能使NO释放增加。而在间歇性缺氧条件下,较低强度运动即可使NO释放明显增加。提示间歇性缺氧条件可使引起NO释放的运动强度阈值下降。  相似文献   

18.
目的:对20名平原受试者进行为期3周递增性低氧训练,测试其低氧训练前后模拟海拔4 800m(PO2为10.4%~10.8%)时血清抗利尿激素(AVP)和醛固酮(ALD)的变化,并结合AMS评分、心率和血压,探讨递增性低氧训练对模拟高海拔低氧环境的适应效果。方法:阶段1:受试者于模拟海拔4 800m低氧环境中急性暴露6 h,以60rpm、80 W的定量负荷仰卧蹬车20 min,LLS量表评价AMS,测试低氧暴露过程中的HR和BP,低氧结束时的血清AVP和ALD;阶段2:进行3周递增性低氧训练后,再重复阶段1的测试。结果:低训后模拟海拔4 800m低氧环境下,AMS评分大于等于3分的人数由9人降到2人;运动时的心率明显低于低训前;急性低氧暴露6h,血清AVP和ALD均较常氧值显著下降;低训3周后再次低氧暴露,血清AVP和ALD与常氧值相比较,均无显著差异。结论:递增性低氧训练有助于增强机体对低氧的习服。  相似文献   

19.
This study sought to establish perceptions of elite endurance athletes on the role and worth of altitude training. Elite British endurance runners were surveyed to identify the altitude and hypoxic training methods utilised, along with reasons for use, and any situational, cultural and behaviour factors influencing these. Prior to the 2012 Olympics Games, 39 athletes and 20 support staff (coaches/practitioners) completed an internet-based survey to establish differences between current practices and the accepted “best-practice”. Almost all of the athletes (98%) and support staff (95%) surveyed had utilised altitude and hypoxic training, or had advised it to athletes. 75% of athletes believed altitude and hypoxia to be a “very important” factor in their training regime, with 50% of support staff believing the same. Athletes and support staff were in agreement of the methods of altitude training utilised (i.e. 'hypoxic dose’ and strategy), with camps lasting 3–4 weeks at 1,500–2,500 m being the most popular. Athletes and support staff are utilising altitude and hypoxic training methods in a manner agreeing with research-based suggestions. The survey identified a number of specific challenges and priorities, which could provide scope to optimise future altitude training methods for endurance performance in these elite groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号