首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

This study identified key somatic and demographic characteristics that benefit all swimmers and, at the same time, identified further characteristics that benefit only specific swimming strokes. Three hundred sixty-three competitive-level swimmers (male [n = 202]; female [n = 161]) participated in the study. We adopted a multiplicative, allometric regression model to identify the key characteristics associated with 100 m swimming speeds (controlling for age). The model was refined using backward elimination. Characteristics that benefited some but not all strokes were identified by introducing stroke-by-predictor variable interactions. The regression analysis revealed 7 “common” characteristics that benefited all swimmers suggesting that all swimmers benefit from having less body fat, broad shoulders and hips, a greater arm span (but shorter lower arms) and greater forearm girths with smaller relaxed arm girths. The 4 stroke-specific characteristics reveal that backstroke swimmers benefit from longer backs, a finding that can be likened to boats with longer hulls also travel faster through the water. Other stroke-by-predictor variable interactions (taken together) identified that butterfly swimmers are characterized by greater muscularity in the lower legs. These results highlight the importance of considering somatic and demographic characteristics of young swimmers for talent identification purposes (i.e., to ensure that swimmers realize their most appropriate strokes).  相似文献   

2.
Abstract

In this study, we assessed arm coordination in the backstroke over increasing speeds by adapting the index of coordination originally used in the front crawl. Fourteen elite male backstroke swimmers swam four trials of 25 m at the speeds corresponding to the 400-m, 200-m, 100-m, and 50-m events. The six phases of the arm stroke were identified by video analysis and then used to calculate the index of coordination, which corresponded to the time between the propulsive phases of the two arms. With increases in speed, the elite swimmers increased the stroke rate, the relative duration of their arm pull, and their index of coordination, and decreased the distance per stroke (P < 0.05). Arm coordination was always in catch-up (index of coordination of ?12.9%) because the alternating body-roll and the small shoulder flexibility did not allow the opposition or superposition coordination seen in the front crawl. This new method also quantified the relative duration of the hand's lag time at the thigh, which did not change (~2%) with increasing speed for the elite swimmers. The index of coordination enables coaches to assess mistakes in backstroke coordination, particularly in the hand's lag time at the thigh.  相似文献   

3.
During backstroke, an optimum shoulder entry angle of 180° has been anecdotally suggested; however, this has yet to be investigated biomechanically. The aim of this study was to quantify shoulder entry angles for advanced and intermediate backstroke swimmers. Six advanced (season's best?<150?s) and six intermediate (season's best?>160?s) 200-m backstroke swimmers had markers applied to the medial humeral epicondyles and glenoid cavities. Following a familarization period, participants completed backstroke swimming trials (90?s each) in a swimming flume at 50%, 60%, 70%, and 80% of their season's best 200-m velocity. A camera positioned above the flume recorded frontal plane motion, which was digitized and analysed in Simi Motion Systems. The mean peak angle between the upper arm and the line of progression was established in ten strokes for each participant. The results showed backstroke shoulder entry angles for advanced swimmers (170°) were significantly closer to the suggested optimum 180° compared with those of intermediate swimmers (161°). The non-dominant arm displayed values closer to the optimum (171°), while swimming speed had no effect on backstroke shoulder entry angle. In conclusion, backstroke shoulder entry angle may help discriminate between advanced and intermediate backstroke swimmers and may be influenced by laterality dominance, being independent of swimming speed.  相似文献   

4.
FINA recently approved the backstroke ledge (Omega OBL2) to improve backstroke start performance in competition, but its performance has not been thoroughly evaluated. The purpose of this study was to compare the mechanics of starts performed with and without the OBL2. Ten high-level backstroke swimmers performed three starts with, and three starts without, the OBL2. A wall-mounted force plate measured the lower limb horizontal impulse, vertical impulse, take-off velocity and take-off angle. Entry distance, time to 10 m and start of hip and knee extension were recorded using video cameras. Starts performed with the OBL2 had a 0.13 s lower time to 10 m, 2.5% less variability in time to 10 m and 0.14 m greater head entry distance. The OBL2 provides a performance advantage by allowing an increased head entry distance rather than larger horizontal impulse on the wall. This may be due to the swimmers assuming different body positions during the start manoeuvre. Additional studies are needed to evaluate factors that contribute to improved performance when using the OBL2. Swimmers should train with the OBL2 and use it in competition to ensure optimal start performance.  相似文献   

5.
The purpose of this study was to determine the installation of the backstroke start device reduces 15-m time. Thirteen college swimmers participated in this study. The aerial start and underwater motions were recorded with two digital video cameras. The center of mass (CM) of the swimmer, angular displacements and velocities of the shoulder, hip and knee joints were calculated. As an indicator of performance, the 5- and 15-m times were measured. The 5- and 15-m times in the backstroke start device condition were significantly shorter than in the non-backstroke start device condition. The vertical velocities of the CM at hand-off and toe-off in the backstroke start device condition were significantly greater than in the non-backstroke start device condition, while there was no significant difference in the CM horizontal velocity at toe-off. As a result, the height of the great trochanter at entry of the fingertips, with the backstroke start device, was 15 cm higher than in the non-backstroke start device condition. In addition, the CM horizontal velocities at 5 m in the backstroke start device condition were significantly greater than those of the non-backstroke start device. Thus, the use of the backstroke start device may reduce the 15-m time by diminution of the entry area.  相似文献   

6.
This study investigated the effect of completing additional warm-up strategies in the transition phase between the pool warm up and the start of a race on elite sprint swimming performance. Twenty-five elite swimmers (12 men, 20 ± 3 years; 13 women, 20 ± 2 years, performance standard ~807 FINA2014 points) completed a standardised pool warm up followed by a 30-min transition phase and a 100-m freestyle time trial. During the transition phase, swimmers wore a tracksuit jacket with integrated heating elements and performed a dry land-based exercise routine (Combo), or a conventional tracksuit and remained seated (Control). Start (1.5% ± 1.0%, P = 0.02; mean ± 90% confidence limits) and 100-m time trial (0.8% ± 0.4%, P < 0.01) performances were improved in Combo. Core temperature declined less (?0.2°C ± 0.1°C versus ?0.5°C ± 0.1°C, P = 0.02) during the transition phase and total local (trapezius) haemoglobin concentration was greater before the time trial in Combo (81 µM ± 25 µM versus 30 µM ± 18 µM, P < 0.01; mean ± standard deviation) than in Control. Combining swimmers traditional pool warm up with passive heating via heated jackets and completion of dry land-based exercises in the transition phase improves elite sprint swimming performance by ~0.8%.  相似文献   

7.
8.
In this study, we assessed arm coordination in the backstroke over increasing speeds by adapting the index of coordination originally used in the front crawl. Fourteen elite male backstroke swimmers swam four trials of 25 m at the speeds corresponding to the 400-m, 200-m, 100-m, and 50-m events. The six phases of the arm stroke were identified by video analysis and then used to calculate the index of coordination, which corresponded to the time between the propulsive phases of the two arms. With increases in speed, the elite swimmers increased the stroke rate, the relative duration of their arm pull, and their index of coordination, and decreased the distance per stroke (P < 0.05). Arm coordination was always in catch-up (index of coordination of -12.9%) because the alternating body-roll and the small shoulder flexibility did not allow the opposition or superposition coordination seen in the front crawl. This new method also quantified the relative duration of the hand's lag time at the thigh, which did not change ( approximately 2%) with increasing speed for the elite swimmers. The index of coordination enables coaches to assess mistakes in backstroke coordination, particularly in the hand's lag time at the thigh.  相似文献   

9.
Hand paddles and parachutes have been used in order to overload swimmers, and consequently increase the propulsive force generation in swimming. However, their use may affect not only kinematical parameters (average speed, stroke length and stroke rate), but also time gaps between propulsive phases, assessed through the index of coordination (IdC). The objective of this study was to assess the effects of hand paddles and parachute use, isolated or combined, on kinematical parameters and coordination. Eleven swimmers (backstroke 50-m time: 29.16 ± 1.43 s) performed four 15-m trials in a randomised order at maximal intensity: (1) without implements (FREE), (2) with hand paddles (HPD), (3) with parachute (PCH) and (4) with hand paddles plus parachute (HPD+PCH). All trials were video-recorded (60 Hz) in order to assess average speed, stroke rate, stroke length, five stroke phases and index of coordination. When average swimming speed was compared to FREE, it was lower in PCH and HPD+PCH, and higher in HPD. Stroke rate decreased in all overloaded trials compared to FREE. The use of hand paddles and parachute increased and decreased stroke length, respectively. In addition, propulsive phase duration was increased when hand paddles were used, and time gaps shifted towards zero (no time gap), especially when hand paddles were combined with parachute. It is conceivable that the combined use of hand paddles and parachute, once allowing overloading both propulsive and resistive forces, provides a specific stimulus to improve muscle strength and propulsive continuity.  相似文献   

10.
Task-specific auditory training can improve sensorimotor processing times of the auditory reaction time (RT). The majority of competitive swimmers do not conduct habitual start training with the electronic horn used to commence a race. We examined the effect of four week dive training interventions on RT and block time (BT) of 10 male adolescent swimmers (age 14.0 ± 1.4 years): dive training with auditory components (speaker and electronic horn) (n = 5) and dive training without auditory components (n = 5). Auditory stimulus dive training significantly reduced swimming start RT, compared with dive training without auditory components (p < 0.01), with a group mean RT reduction of 13 ± 9 ms. Four of the five swimmers that received auditory stimulus training showed medium to large effect size reductions in RT (d = 0.74; 1.32; 1.40; 1.81). No significant changes to swimmers’ BTs were evident in either dive training intervention. The adolescent swimmers’ results were compared against six male elite swimmers (age 19.8 ± 1.0 years). The elite swimmers had significantly shorter BTs (p < 0.05) but no significant difference in RTs. Auditory stimulus dive training should be explored further as a mechanism for improving swimming start performance in elite swimmers who have pre-established optimal BTs.  相似文献   

11.
The aim of this study was to examine the performance characteristics of male and female finalists in the 100-m distance at the 2016 European Championships in swimming (long-course-metre). The performances of all 64 (32-males and 32-females) were analysed (8 swimmers per event; Freestyle, Backstroke, Breaststroke and Butterfly). A set of start and turn parameters were analysed. In the start main outcome, male swimmers were faster in Butterfly (5.71 ± 0.14s) and females in Freestyle (6.68 ± 0.28s). In the turn main outcome, male and female swimmers were faster in Freestyle (males: 9.55 ± 0.13s; females: 10.78 ± 0.28s). A significant and strong stroke effect was noted in the start and turn main outcome, in both sexes. In the start plus the turn combined, males and females were faster in Freestyle (males: 15.40 ± 0.20s; females: 17.45 ± 0.54s). The start and the turn combined accounted almost one-third of the total race time in all events, and non-significant differences (p > 0.05) were noted across the four swim strokes. Once this research made evident the high relevance of start and turns, it is suggested that coaches and swimmers should dedicate an expressive portion of the training perfecting these actions.  相似文献   

12.
The aim of this study was to examine the effect of swimming speed on leg-to-arm coordination in competitive unilateral arm amputee front crawl swimmers. Thirteen well-trained swimmers were videotaped underwater during three 25-m front crawl trials (400 m, 100 m and 50 m pace). The number, duration and timing of leg kicks in relation to arm stroke phases were identified by video analysis. Within the group, a six-beat kick was predominantly used (n = 10) although some swimmers used a four-beat (n = 2) or eight-beat kick (n = 1). Swimming speed had no significant effect on the relative duration of arm stroke and leg kick phases. At all speeds, arm stroke phases were significantly different (P < 0.05) between the affected and unaffected sides. In contrast, the kicking phases of both legs were not different. Consequently, leg-to-arm coordination was asymmetrical. The instant when the leg kicks ended on the affected side corresponded with particular positions of the unaffected arm, but not with the same positions of the affected arm. In conclusion, the ability to dissociate the movements of the arms from the legs demonstrates that, because of their physical impairment, unilateral arm amputee swimmers functionally adapt their motor organisation to swim front crawl.  相似文献   

13.
The present study aimed to examine how high- and low-speed swimmers organise biomechanical, energetic and coordinative factors throughout extreme intensity swim. Sixteen swimmers (eight high- and eight low-speed) performed, in free condition, 100-m front crawl at maximal intensity and 25, 50 and 75-m bouts (at same pace as the previous 100-m), and 100-m maximal front crawl on the measuring active drag system (MAD-system). A 3D dual-media optoelectronic system was used to assess speed, stroke frequency, stroke length, propelling efficiency and index of coordination (IdC), with power assessed by MAD-system and energy cost by quantifying oxygen consumption plus blood lactate. Both groups presented a similar profile in speed, power output, stroke frequency, stroke length, propelling efficiency and energy cost along the effort, while a distinct coordination profile was observed (F(3, 42) = 3.59, = 0.04). Speed, power, stroke frequency and propelling efficiency (not significant, only a tendency) were higher in high-speed swimmers, while stroke length and energy cost were similar between groups. Performing at extreme intensity led better level swimmers to achieve superior speed due to higher power and propelling efficiency, with consequent ability to swim at higher stroke frequencies. This imposes specific constraints, resulting in a distinct IdC magnitude and profile between groups.  相似文献   

14.
The aim of this study was to examine the importance of the change-over time in swimming relay races. Top-class international 4 x 100 m freestyle races were analysed across a 10-year period including three Olympic Games and five European and World Championships. A total of 220 swimmers (116 female, 104 male) were included in this study with an average participation of 1.7 ± 1.2 races. To consider such repeated measurements and other factors (e.g., ranking in the relay race, position in the relay team) linear mixed models for longitudinal data were used for the statistical evaluation. Our results showed significantly longer change-over times for male medallists (0.23 ± 0.08 s) than non-medallists (0.20 ± 0.09 s) which reflects a very likely effect (94.2%). Furthermore, there were significant differences in change-over times between female and male swimmers depending on the current race positions. In total, the influence of change-over time on the final performance in 4 x 100-m freestyle relay appears to be overrated in previous studies.  相似文献   

15.
In the present research, we examined the effect of the starting and turning performances on the subsequent swimming parameters by (1) comparing the starting and turning velocities with the swimming parameters on the emersion and mid-pool segments and (2) by relating the individual behaviour of swimmers during the start and turns with subsequent behaviour on each swimming lap. One hundred and twelve 100 m performances on the FINA 2013 World Swimming Championships were analysed by an image-processing system (InThePool 2.0®). At the point of the start emersion, the swimming parameters of the 100-m elite swimmers were substantially greater than the mid-pool parameters, except on the breaststroke races. On the other hand, no diminution in the swimming parameters was observed between the turn emersion and the mid-pool swimming, except on the butterfly and backstroke male races. Changes on the surface swimming kinematics were not generally related to the starting or turning parameters, although male swimmers who develop faster starts seem to achieve faster velocities at emersion. Race analysts should be aware of a transfer of momentum when swimmers emerge from underwater with implications on the subsequent swimming kinematics, especially for male swimmers who employ underwater undulatory techniques.  相似文献   

16.
Abstract

The purpose of this study was to characterize changes and variability in test performance of swimmers within and between seasons over their elite competitive career. Forty elite swimmers (24 male, 16 female) performed a 7×200-m incremental swimming step test several times each 6-month season (10±5 tests, spanning 0.5–6.0?y). Mixed linear modeling provided estimates of percent change in the mean and individual responses (within-athlete variation as a coefficient of variation) for measures based on submaximal performance (fixed 4-mM lactate), maximal performance (the seventh step) and lean mass (from skinfolds and body mass). Submaximal and maximal swim speed increased within each season from pre to taper phase by ~2.2% for females and ~1.5% for males (95% confidence limits ±1.0%), with variable contributions from stroke rate and stroke length. Most of the gains in speed were lost in the off-season, leaving a net average annual improvement of ~1.0% for females and ~0.6% for males (±1.0%). For submaximal and maximal speed, individual variation between phases was ±2.2% and the typical measurement error was ±0.80%. Step test and anthropometric measures can be used to confidently monitor progressions in swimmers in an elite training program within and between seasons.  相似文献   

17.
Pacing strategies of elite swimmers have been consistently characterised from the average lap velocities. In the present study, we examined the racing strategies of 200 m world class-level swimmers with regard to their underwater and surface lap components. The finals and semi-finals of the 200 m races at the 2013 World Swimming Championships (Barcelona, Spain) were analysed by an innovative image-processing system (InThePool® 2.0). Free swimming velocities of elite swimmers typically decreased throughout the 200 m race laps (?0.12 m · s–1, 95% CI ?0.11 to ?0.14 m · s–1, P = 0.001, η2 = 0.81), whereas underwater velocities, which were faster than free swimming, were not meaningfully affected by the race progress (0.02 m · s–1, ?0.01 to 0.04 m · s–1, P = 0.01, η2 = 0.04). When swimming underwater, elite swimmers typically travelled less distance (?0.66 m, ?0.83 to ?0.49 m, P = 0.001, η2 = 0.34) from the first to the third turn of the race, although underwater distances were maintained on the backstroke and butterfly races. These strategies allowed swimmers to maintain their average velocity in the last lap despite a decrease in the free swimming velocity. Elite coaches and swimmers are advised to model their racing strategies by considering both underwater and surface race components.  相似文献   

18.
Abstract

The purpose of this study was to clarify factors to perform the hole-entry technique in the backstroke start. A total of 16 well-trained Japanese competitive swimmers were divided into two groups (backstroke specialists and non-specialists) to compare their backstroke start motions. Their backstroke motions were videotaped, and two-dimensional co-ordinates for the swimmers were obtained from the video images using direct linear transformation methods. A non-paired t-test and Mann–Whitney U-test were used to analyse the statistical difference of the kinematic variables between the groups. Backstroke specialists showed a significantly shorter 5 m time (P = 0.009, effect size = –1.54), a significantly higher position of the toe (P = 0.010, effect size = 1.47) at signal and of the hip at toe-off (P = 0.002, effect size = 1.94), a significantly larger hip joint angle at toe-off (P = 0.007, effect size = 1.60) and a significantly higher angular velocities of the hip joints (45–85%; P < 0.05) for the normalised time as compared to that of non-specialists. An earlier initiation of the extension and the maintenance of a higher extension speed at the hip joints were important factors in achieving an arched-back posture, which facilitated and water entrance with a small entry range.  相似文献   

19.
Change-of-direction (COD) ability is an essential physical component for soccer. This study examined the relationships between conventional speed–power assessments and COD performance in elite young soccer players. Twenty-five under-20 male players from the same club (age: 17.6?±?0.8 years, height: 178.1?±?6.7?cm, body mass [BM]: 72.2?±?7.9?kg) performed sprint speed tests, vertical jumps, loaded jump squats, half squats, and Zigzag COD assessments. Moreover, the COD deficit was calculated as the difference between 20-m sprint velocity and Zigzag COD test velocity. A Pearson correlation analysis was used to determine the correlations between Zigzag COD performance and COD deficit with speed and power outputs. Although no significant relationships between speed–power variables and COD ability were present, there were still strong positive correlations between traditional neuromechanical measures and COD deficit. Briefly, it seems that higher performances in speed and power tests are not necessarily related to better performances in specific COD maneuvers. Therefore, it is recommended that coaches and technical staff include specific COD drills in soccer player routines to optimize the transference from speed and power capacities to specific COD performance.  相似文献   

20.
The purpose of this study was to examine the metabolic responses during submaximal swimming with self-selected normal breathing (N) and prolonged expiration along with reduced frequency breathing (RB). Ten male swimmers (age: 23.1 ± 2.2 years; VO2max: 47.3 ± 7.2 ml · kg?1 · min?1) performed 75-, 100-, 175-, 200-, 275-, 300-, 375- and 400-m trials with N and RB at intensity corresponding to 90% of the critical speed. In RB condition, all trials longer than 75 m were interspersed with 25 m of self-selected N in regular intervals. In RB, oxygen saturation during recovery was decreased compared to starting values after 75, 100, 175, 275 and 375 m (78–91%, P < 0.05), while it remained unchanged after all trials in N condition (98 ± 2%, P > 0.05). Lactate concentration was higher in RB than in N after 400 m (4.3 ± 1.5 vs. 3.3 ± 1.7 mmol · l?1, P < 0.05). During recovery after the 375-m trial, partial pressure of carbon dioxide was increased and pH was decreased in RB compared to N condition. Prolonged expiration along with RB provokes severe hypoxemia during the recovery period after swimming, which is restored with self-selected N during submaximal swimming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号