首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
ABSTRACT

The main purpose of this study was to compare the effects of resistance training (RT) performed with different training volumes on phase angle (PhA), body water components, and muscle quality (MQ) in untrained older adult women. A second purpose was to assess the relationship between PhA and MQ. Sixty-two older adult women (68.6 ± 5.0 years, 65.2 ± 13.3 kg, 156.1 ± 6.2 cm) were randomly assigned into one of the three groups: two training groups performed either 1 set (G1S) or 3 sets (G3S), or a control group (CG). Body water components and PhA were estimated by bioelectrical impedance (BIA). MQ was determined by dividing skeletal muscle mass estimated by dual-energy absorptiometry (DXA) by total muscle strength from three exercises. After the intervention period, both training groups demonstrated improvements (< 0.05) when compared with CON for intracellular water, total body water, PhA, and MQ. These results suggest that RT can improve PhA, body water components, and MQ after 12 weeks of RT in untrained older women, regardless of training volume. Furthermore, changes in MQ were positively correlated with changes in PhA (r = 0.60, P < 0.01).  相似文献   

2.
The purpose of this study was to examine the effects of a 10 week contrast training (CT) programme (isometric + plyometric) on jumping, sprinting abilities and agility performance in prepubertal basketball players. Fifty-eight children from a basketball academy (age: 8.72 ± 0.97 years; body mass index: 17.22 ± 2.48 kg/m2) successfully completed the study. Participants were randomly assigned to experimental groups (EG, n = 30) and control groups (CG, n = 28). The CT programme was included in the experimental group’s training sessions – twice a week – as part of their usual weekly training regime. This programme included 3 exercises: 1 isometric and 2 plyometric. Jumping, sprinting and agility performance were assessed before and after the training programme. Significant differences were found in posttest between EG and CG in sprint and T-test: EG showed better results than CG. Furthermore, there were significant differences in posttest-pretest between EG and CG in squat jump, countermovement jump, drop jump, sprint and T-test with the EG showing better results than CG. The CT programme led to increases in vertical jump, sprint and agility levels, so that the authors suggest that prepubertal children exhibit high muscular strength trainability.  相似文献   

3.
4.
Purpose: The purpose of this study was to investigate the physiological adaptations of resistance training (RT) in prepubertal boys. Methods: Eighteen healthy boys were divided into RT (n = 9, Mage = 10.4 ± 0.5 years) and control (CTR; n = 9, Mage = 10.9 ± 0.7 years) groups. The RT group underwent a resistance training during 12 weeks, 3 times per week, performing 3 sets of 6 to 15 repetitions at intensities ranging from 60% to 80% of maximal dynamic strength (1-repetition maximum [1-RM] values). Before and after the training, the groups were assessed in their body mass and composition (dual-energy X-ray absorptiometry), isokinetic dynamometry, 1-RM, and ergoespirometry. Moreover, force per unit of muscle volume was calculated by the quotient between 1-RM and lean mass. Results: Both groups presented statistically significant (p < .05) increases in the 1-RM and force per unit of muscle volume in the knee extension and elbow flexion, but these strength increases were statistically significantly greater in the RT group (effect size [ES] = 2.83–9.00) than in the CTR group (ES = 0.72–1.00). Moreover, both groups statistically significantly increased in lean body mass variables (ES = 0.12–0.38). However, increases in the fat mass variables occurred only in the CTR group (ES = ? 0.01–0.50), whereas no changes were observed in the RT group. Furthermore, there were statistically significant increases in all bone mineral content variables (ES = 0.13–0.43), without differences between groups. No cardiorespiratory changes were observed. Conclusion: Twelve weeks of RT was effective in improving strength and force per unit of muscle volume and prevented fat mass increases in boys.  相似文献   

5.
ABSTRACT

This study aimed to investigate between- and within-team changes in workload [PlayerLoad (PL), training impulse (TRIMP) and session rate of perceived exertion training load (sRPE-TL)], readiness [heart rate variability (HRV)], and physical performance [20-m sprint test (including 10-m split time), countermovement jump (CMJ) and yo-yo intermittent recovery test level 1 (YYIR1)] during 3-week intensified preparation periods in female, national Under18 (n = 12, age = 18.0 ± 0.5y, stature = 180.4 ± 7.5 cm, body mass = 72.7 ± 9.3 kg) and Under20 (n = 12, age = 19.6 ± 0.8y, stature = 178.6 ± 6.4 cm, body mass = 68.0 ± 5.9 kg) basketball teams. Under18 team revealed small-to-moderate statistically significantly higher values in workload [PL: p = 0.010; ES = Small; TRIMP: p = 0.004; ES = Moderate; sRPE-TL: p < 0.001; ES = Moderate] and moderately lower readiness values (p = 0.023; ES = Moderate) compared to Under20. Within-team analysis showed no differences in workload in Under20 and statistically significant reduction (p < 0.05) in Week3 (taper period) in Under18. Pre- and post-preparation changes showed Under18 increasing only YYIR1 performance (p < 0.001; ES = Very large). Differently, Under20 statistically improved in 10-m split time (p = 0.003; ES = Moderate), CMJ (p = 0.025; ES = Moderate) and YYIR1 (p < 0.001; ES = Large). A constant adequate workload positively benefits players’ readiness and physical performances during short intensified preparation periods. Conversely, using high workload with periodization strategies encompassing short overload and taper phases induced positive changes on players’ aerobic performance, lower readiness values and no changes in anaerobic performances.  相似文献   

6.
This assessor-blinded, randomized controlled superiority trial investigated the efficacy of the 10-week Nordic Hamstring exercise (NHE) protocol on sprint performance in football players.

Thirty-five amateur male players (age: 17–26 years) were randomized to a do-as-usual control group (CG; n = 17) or to 10-weeks of supervised strength training using the NHE in-season (IG; n = 18). A repeated-sprint test, consisting of 4 × 6 10 m sprints, with 15 s recovery period between sprints and 180 s between sets, was conducted to evaluate total sprint time as the primary outcome. Secondary outcomes were best 10 m sprint time (10mST) and sprint time during the last sprint (L10mST). Additionally, peak eccentric hamstring strength (ECC-PHS) and eccentric hamstring strength capacity (ECC-CAPHS) were measured during the NHE.

Ten players were lost to follow-up, thus 25 players were analyzed (CG n = 14; IG n = 11). Between-group differences in mean changes were observed in favor of the IG for sprint performance outcomes; TST (?0.649 s, p = 0.056, = 0.38), 10mST (?0.047 s, p = 0.005, = 0.64) and L10mST (?0.052 s, p = 0.094, = 0.59), and for strength outcomes; ECC-PHS (62.3 N, p = 0.006, = 0.92), and ECC-CAPHS (951 N, p = 0.005, = 0.95).

In conclusion, the NHE showed small-to-medium improvements in sprint performance and large increases in peak eccentric hamstring strength and capacity.

Trial Registration Number: NCT02674919  相似文献   

7.
Abstract

Omentin-1 is a newly discovered protein expressed and secreted from visceral adipose tissue that increases insulin sensitivity. We examined the effects of 12 weeks of aerobic training on serum omentin-1 concentrations together with cardiovascular risk factors in overweight and obese men. Eighteen overweight and obese participants (age 43.1 ± 4.7 years, BMI ≥25 kg · m?2) were assigned to exercise training (n = 9) and control (n = 9) groups. A matched control group of normal weight participants (n = 8; age 42.2 ± 3.8 years, BMI <25 kg · m?2) were also recruited for baseline comparison. The obese exercise group participated in 12 weeks of progressive aerobic training 5 days a week. Measures of serum omentin-1, insulin resistance, lipid profiles, blood pressure, and body composition were obtained before and after the 12 weeks. At baseline, normal weight participants had significantly higher serum omentin-1 concentrations than overweight and obese participants, and there were inverse correlations between omentin-1 and each of waist circumference, fasting glucose, insulin resistance, total cholesterol, triglyceride, and systolic blood pressure (P < 0.05). After the aerobic training, waist circumference, percent body fat, fasting glucose, insulin resistance, triglyceride, total cholesterol, low-density lipoprotein cholesterol, and systolic blood pressure were all significantly decreased (P < 0.05). In contrast, serum omentin-1 concentration was significantly increased after the aerobic programme (P < 0.05), and correlated with changes in insulin resistance (r = ?0.67, P = 0.04), glucose (r = ?0.65, P = 0.05), waist circumference (r = ?0.70, P = 0.03), and aerobic fitness r = ?0.68, P = 0.04). Aerobic training resulted in an improvement in cardiometabolic risk factors in obese participants, and this improvement was accompanied by increased omentin-1 concentrations.  相似文献   

8.
The aim of this study was to compare the physical and movement demands between training and match-play in schoolboy and academy adolescent rugby union (RU) players. Sixty-one adolescent male RU players (mean ± SD; age 17.0 ± 0.7 years) were recruited from four teams representing school and regional academy standards. Players were categorised into four groups based on playing standard and position: schoolboy forwards (n = 15), schoolboy backs (n = 15), academy forwards (n = 16) and academy backs (n = 15). Global positioning system and accelerometry measures were obtained from training and match-play to assess within-group differences between conditions. Maximum data were analysed from 79 match files across 8 matches (1.3 ± 0.5 matches per participant) and 152 training files across 15 training sessions (2.5 ± 0.5 training sessions per participant). Schoolboy forwards were underprepared for low-intensity activities experienced during match-play, with schoolboy backs underprepared for all movement demands. Academy forwards were exposed to similar physical demands in training to matches, with academy backs similar to or exceeding values for all measured variables. Schoolboy players were underprepared for many key, position-specific aspects of match-play, which could place them at greater risk of injury and hinder performance, unlike academy players who were better prepared.  相似文献   

9.
This study analysed the effects of bilateral and non-dominant practice on novice practitioners’ lateral preference for judo skills in a combat context (i.e., randori). Thirty sports sciences students (22 men and 8 women; mean age 19 ± 1 years) with right hand, foot, and counterclockwise rotation preferences were divided into 3 groups: bilateral (BG; n = 8), non-dominant (NDG; n = 11), and control (CG; n = 11). Participants received 8 weeks of training at a rate of 3 days per week. The NDG was trained to perform judo skills exclusive with their non-dominant side, while the BG performed every task symmetrically. Before and after training, participants were recorded during two 3-min randoris to obtain the percentage of their engagement in dominant side actions. Pretest percentages were 73.1 ± 19.9%, 77.8 ± 18.8%, and 68.9 ± 27.2% for BG, NDG, and CG, respectively. Post-test values were 75.0 ± 15.6%, 23.3 ± 27.9%, and 72.2.9 ± 20.4%, respectively. Significant differences were observed between NDG and each of the other groups after the training. Changes from pretest were only significant for NDG (P = 0.003). These results suggest that lateral preference among novice judo practitioners during randori can be modulated by the type of practice.  相似文献   

10.
This randomised controlled trial investigated changes in eccentric hamstring strength, 10m sprint speed, and change-of-direction (COD) performance immediately post Nordic hamstring curl (NHC) intervention and following a 3-week detraining period.

Fourteen male team sports athletes were randomised to a do-as-usual control group (CG; = 7) or to a NHC intervention group (NHC; = 7). Isokinetic dynamometry at 180°/s evaluated eccentric hamstring strength immediately post-intervention as the primary outcome measure. Secondary outcomes included 10 m sprint time and COD. Each outcome was measured, pre, immediately post-intervention and following a 3-week detraining period.

Immediately post-intervention significant group differences were observed in the NHC group for eccentric hamstring strength (31.81 Nm?1 vs. 6.44 Nm?1, P = 0.001), COD (?0.12 s vs. 0.20 s; P = 0.003) and sprint (- 0.06 s vs. 0.05 s; P = 0.024) performance. Performance improvements were maintained following a detraining period for COD (?0.11 s vs. 0.20 s; P = 0.014) and sprint (?0.05 s vs. 0.03 s, P = 0.031) but not eccentric hamstring strength (15.67 Nm?1 vs. 6.44 Nm?1, P = 0.145) These findings have important implications for training programmes designed to reduce hamstring injury incidence, whilst enhancing physical qualities critical to sport.  相似文献   


11.
The purpose of the current study was to examine the effect of 6 weeks of whole body vibration training (WBVT) on body composition, muscle activity of the gastrocnemius and vastus lateralis, gastrocnemius muscle architecture (static and dynamic) and ground reaction forces (performance jump) during the take-off phase of a countermovement jump in young healthy adult males. A total of 33 men (23.31 ± 5.62 years) were randomly assigned to a whole body vibration group (experimental group, EGWBVT: n = 17; 22.11 ± 4.97 years) or a control group (CG: n = 16; 24.5 ± 6.27 years). The total duration of the intervention phase (WBVT) was 6 weeks with a frequency of 3 sessions per week. Statistically significant differences were observed (P ≤ 0.05) between pre- and post-test in the power peak (Δ 1.91 W · kg?1; P = 0.001), take-off velocity (0.1 cm · s?1; P = 0.002) and jump height (Δ 0.4 cm; P = 0.002) for EGWBVT. There were no statistically significant differences in any of the body composition and muscle architecture variables. Moreover, no significant differences were found between EGWBVT and CG nor changes in muscle activity during take-off phase of the gastrocnemius and vastus lateralis pre- versus post-training. This study suggests that a 6-week WBVT programme with increasing intensity improves jump performance but does not alter muscle activity nor muscle architecture in healthy young men.  相似文献   

12.
The purpose of this paper was to systematically review the current literature and elucidate the effects of total weekly resistance training (RT) volume on changes in measures of muscle mass via meta-regression. The final analysis comprised 34 treatment groups from 15 studies. Outcomes for weekly sets as a continuous variable showed a significant effect of volume on changes in muscle size (P = 0.002). Each additional set was associated with an increase in effect size (ES) of 0.023 corresponding to an increase in the percentage gain by 0.37%. Outcomes for weekly sets categorised as lower or higher within each study showed a significant effect of volume on changes in muscle size (P = 0.03); the ES difference between higher and lower volumes was 0.241, which equated to a percentage gain difference of 3.9%. Outcomes for weekly sets as a three-level categorical variable (<5, 5–9 and 10+ per muscle) showed a trend for an effect of weekly sets (P = 0.074). The findings indicate a graded dose-response relationship whereby increases in RT volume produce greater gains in muscle hypertrophy.  相似文献   

13.
Task-specific auditory training can improve sensorimotor processing times of the auditory reaction time (RT). The majority of competitive swimmers do not conduct habitual start training with the electronic horn used to commence a race. We examined the effect of four week dive training interventions on RT and block time (BT) of 10 male adolescent swimmers (age 14.0 ± 1.4 years): dive training with auditory components (speaker and electronic horn) (n = 5) and dive training without auditory components (n = 5). Auditory stimulus dive training significantly reduced swimming start RT, compared with dive training without auditory components (p < 0.01), with a group mean RT reduction of 13 ± 9 ms. Four of the five swimmers that received auditory stimulus training showed medium to large effect size reductions in RT (d = 0.74; 1.32; 1.40; 1.81). No significant changes to swimmers’ BTs were evident in either dive training intervention. The adolescent swimmers’ results were compared against six male elite swimmers (age 19.8 ± 1.0 years). The elite swimmers had significantly shorter BTs (p < 0.05) but no significant difference in RTs. Auditory stimulus dive training should be explored further as a mechanism for improving swimming start performance in elite swimmers who have pre-established optimal BTs.  相似文献   

14.
Abstract

The purpose of this study was (a) to assess lactate accumulation during isometric exercise, and to quantify the shifts in accumulation following isometric training; and (b) to relate any training-induced changes in lactate accumulation to reductions in resting blood pressure. Eleven male participants undertook isometric training for a 4-week period using bilateral-leg exercise. Training caused reductions in systolic, diastolic, and mean arterial resting blood pressure (of ?4.9 ± 6.3 mmHg, P = 0.01; ?2.6 ± 3.0 mmHg, P = 0.01; and ?2.6 ± 2.3 mmHg, P = 0.001 respectively; mean ± s). These were accompanied by changes in muscle activity, taken as electromyographic activity to reach a given lactate concentration (from 114 ± 22 to 131 ± 27 mV and from 136 ± 25 to 155 ± 34 mV for 3 and 4 mmol · L?1 respectively. Training intensity expressed relative to peak lactate was correlated with reduced resting systolic and mean arterial blood pressure. Training caused significant shifts in lactate accumulation, and reductions in resting blood pressure are strongly related to training intensity, when expressed relative to pre-training peak lactate. This suggests that higher levels of local muscle anaerobiosis may promote the training-induced reductions in resting blood pressure.  相似文献   

15.
ABSTRACT

We aimed to determine key biomechanical parameters explaining age-related jumping performance differences in youth elite female soccer players. Multiple biomechanical parameters from countermovement (CMJ) squat (SJ) and drop (DJ) jump testing of elite female soccer players (n = 60) within the same national training centre were analysed across ages 9-11y, 12-14y and 15-19y. Effects of age group and jump type on jump height were found, with the older jumping higher than the younger groups in all jumps (P < 0.05). For DJ, higher reactive strength index was found for older, compared to each younger group (P < 0.001). For CMJ and SJ, peak power was the most decisive characteristic, with significant differences between each group for absolute peak power (P < 0.0001) and body-weight-normalised peak power in CMJ (57 ± 7W/kg, 50 ± 7W/kg, 44.7 ± 5.5W/kg; P < 0.05) and between the older and each younger group in SJ (56.7 ± 7.1W/kg, 48.9 ± 7.1W/kg, 44.6 ± 6W/kg; P < 0.01). Age-related differences in jumping performance in youth elite female soccer players appear to be due to power production during standing jumps and by the ability to jump with shorter ground contact times during reactive jumps.  相似文献   

16.
This study examined the changes in running performance, maximal blood lactate concentrations and running kinematics between 85%BM anti-gravity (AG) running and normal over-ground (OG) running over an 8-week training period. Fifteen elite male developmental cricketers were assigned to either the AG or over-ground (CON) running group. The AG group (n = 7) ran twice a week on an AG treadmill and once per week over-ground. The CON group (n = 8) completed all sessions OG on grass. Both AG and OG training resulted in similar improvements in time trial and shuttle run performance. Maximal running performance showed moderate differences between the groups, however the AG condition resulted in less improvement. Large differences in maximal blood lactate concentrations existed with OG running resulting in greater improvements in blood lactate concentrations measured during maximal running. Moderate increases in stride length paired with moderate decreases in stride rate also resulted from AG training. The use of AG training to supplement regular OG training for performance should be used cautiously, as extended use over long periods of time could lead to altered stride mechanics and reduced blood lactate.  相似文献   

17.
18.
ABSTRACT

Elite cyclists have often a limited period of time available during their short preparation phase to focus on development of maximal strength; therefore, the purpose of the present study was to investigate the effect of 10-week heavy strength training on lean lower-body mass, leg strength, determinants of cycling performance and cycling performance in elite cyclists. Twelve cyclists performed heavy strength training and normal endurance training (E&S) while 8 other cyclists performed normal endurance training only (E). Following the intervention period E&S had a larger increase in maximal isometric half squat, mean power output during a 30-s Wingate sprint (P < 0.05) and a tendency towards larger improvement in power output at 4 mmol ? L?1 [la?] than E (P = 0.068). There were no significant difference between E&S and E in changes in 40-min all-out trial (4 ± 6% vs. ?1 ± 6%, respectively, P = 0.13). These beneficial effects may encourage elite cyclists to perform heavy strength training and the short period of only 10 weeks should make it executable even in the compressed training and competition schedule of elite cyclists.  相似文献   

19.
Carbohydrate (CHO) availability could alter mucosal immune responses to exercise. This study compared the effect of three dietary approaches to CHO availability on resting and post-exercise s-IgA levels. Elite race walkers (n = 26) adhered to a high CHO diet (HCHO), periodised CHO availability (PCHO) or a low CHO/high fat diet (LCHF) for 3 weeks while completing an intensified training program. HCHO and PCHO groups consumed 8.0–8.5 g.kg?1 CHO daily, with timing of ingestion manipulated to alter CHO availability around key training sessions. The LCHF diet comprised 80% fat and restricted CHO to < 50 g.day?1. A race walk test protocol (19 km females, 25 km males) was completed at baseline, after adaptation, and following CHO restoration. On each occasion, saliva samples were obtained pre- and post-exercise to quantify s-IgA levels. Resting s-IgA secretion rate substantially increased ~ two-fold post-intervention in all groups (HCHO: 2.2 ± 2.2, PCHO: 2.8 ± 3.2, LCHF: 1.6 ± 1.6; fold-change± 95% confidence limits), however, no substantial differences between dietary treatments were evident. Post-exercise, substantial 20–130% increases in s-IgA concentration and 43–64% reductions in flow rate occurred in all dietary treatments, with trivial differences evident between groups. It appears that high volume training overrides any effect of manipulating CHO availability on mucosal immunity in elite athletes.  相似文献   

20.
Understanding the effects of training in different footwear on sporting performance would be useful to coaches and athletes. Purpose: This study compared the effects of computerized agility training using 3 types of footwear on change-of-direction and balance performance in young adults. Method: Thirty recreationally active young adults (Mage = 22.8 ± 3.1 years; Mheight = 1.71 ± 0.7 m; Mbodymass = 73.4 ± 10.3 kg) were randomly assigned to a 6-week computerized agility training intervention in 1 of 3 footwear groups (n = 10/group): barefoot, minimal footwear, or traditional shoes. Participants had no previous barefoot or minimal-footwear training experience. Dependent variables included change-of-direction test time to completion, Star Excursion Balance Test, and single-leg stability evaluation. Testing was performed at the start of the training program, after 2 weeks, after 4 weeks, and at the end of the training program. Results: No group or time interactions were found for any of the dependent variables. Time main effects were observed for the performance measures of change of direction, Star Excursion, and single-leg-with-eyes-open stability evaluation. Participants improved in all 3 tests as early as 2 weeks into the intervention, with improvements continuing through the entire 6-week intervention. Conclusions: The lack of interaction and footwear effects suggests that agility and balance improvements during foot agility training are independent of footwear in a recreationally active young-adult population. Computerized agility training improves change-of-direction and balance performance within 2 weeks of training implementation. Future studies should consider footwear training effects in different populations, including frail older adults and athletes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号