首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Aerodynamic efficiency is one of the important criteria for racing bicycle helmets, especially in time trial event. The physical characteristics of a bicycle helmet especially its venting geometry, position and number of vents play a crucial role in the aerodynamic efficiency of the helmet. Despite the importance of this, little information on aerodynamic behaviour of racing bicycle helmets is available. In this study, a series of commercially available time trial helmets were investigated in a wind tunnel environment over a range of wind speeds, and yaw and pitch angles to understand their aerodynamic behaviour. In order to obtain as realistic a data as possible, an instrumented mannequin was used in the wind tunnel testing. The experimental findings indicate that the aerodynamic performance of current production time trial helmets varies significantly. The results also show that helmet length as well as vent geometry and vent area have significant effects on aerodynamic drag of a time trial helmet. A time trial helmet having longer length and smooth vents with minimum vent area can reduce aerodynamic drag significantly.  相似文献   

2.
The speed attained by a track cyclist is strongly influenced by aerodynamic drag, being the major retarding force in track events of more than 200 m. The aims of this study were to determine the effect of changes in shoulder and torso angles on the aerodynamic drag and power output of a track cyclist. The drag of three competitive track cyclists was measured in a wind tunnel at 40 kph. Changes in shoulder and torso angles were made using a custom adjustable handlebar setup. The power output was measured for each position using an SRM Power Meter. The power required by each athlete to maintain a specific speed in each position was calculated, which enabled the surplus power in each position to be determined. The results showed that torso angle influenced the drag area and shoulder angle influenced the power output, and that a low torso angle and middle shoulder angle optimised the surplus power. However, the lowest possible torso angle was not always the best position. Although differences between individual riders was seen, there was a strong correlation between torso angle and drag area.  相似文献   

3.
Wind tunnel tests were carried out on seven male and seven female track cyclists and the drag measured for their current favoured racing position and for different handlebar height and separation combinations deviating from their current favoured position. The handlebars were raised or lowered using spacers on the stem, and the elbow pads were placed wider apart or closer together using the adjustment slots on the pads. The degree to which adjustments were made was dependent on the equipment used, as not all handlebars had the same amount of adjustment. The drag area was calculated from the measured drag force and the results for drag area plotted for each athlete in each position to identify the optimal handlebar position for each athlete. The results showed that the handlebar height had a greater influence on the drag area compared to handlebar separation, but that there was a high degree of variability between athletes as to the optimal handlebar position.  相似文献   

4.
ABSTRACT

Guidance to maintain an optimal aerodynamic position is currently unavailable during cycling. This study used real-time vibrotactile feedback to guide cyclists to a reference position with minimal projected frontal area as an indicator of aerodynamic drag, by optimizing torso, shoulder, head and elbow position without compromising comfort when sitting still on the bike. The difference in recapturing the aerodynamic reference position during cycling after predefined deviations from the reference position at different intensities was analysed for 14 participants between three interventions, consisting of 1) vibrotactile feedback with a margin of error of 1.5% above the calibrated reference projected frontal area, 2) vibrotactile feedback with a margin of 3%, and 3) no feedback. The reference position is significantly more accurately achieved using vibrotactile feedback compared to no feedback (p < 0.001), but there is no significant difference between the 1.5% and 3% margin (p = 0.11) in terms of relative projected frontal area during cycling compared to the calibrated reference position (1.5% margin ?0.46 ± 1.76%, 3% margin ?0.01 ± 2.01%, no feedback 2.59 ± 3.29%). The results demonstrate that vibrotactile feedback can have an added value in assisting and correcting cyclists in recapturing their aerodynamic reference position.  相似文献   

5.
Previous researchers have identified significant differences between laboratory and road cycling performances. To establish the ecological validity of laboratory time-trial cycling performances, the causes of such differences should be understood. Hence, the purpose of the present study was to quantify differences between laboratory- and road-based time-trial cycling and to establish to what extent body size [mass (m) and height (h)] may help to explain such differences. Twenty-three male competitive, but non-elite, cyclists completed two 25 mile time-trials, one in the laboratory using an air-braked ergometer (Kingcycle) and the other outdoors on a local road course over relatively flat terrain. Although laboratory speed was a reasonably strong predictor of road speed (R2 = 69.3%), a significant 4% difference (P < 0.001) in cycling speed was identified (laboratory vs. road speed: 40.4 +/- 3.02 vs. 38.7 +/- 3.55 km x h(-1); mean +/- s). When linear regression was used to predict these differences (Diff) in cycling speeds, the following equation was obtained: Diff (km x h(-1)) = 24.9 - 0.0969 x m - 10.7 x h, R2 = 52.1% and the standard deviation of residuals about the fitted regression line = 1.428 (km . h-1). The difference between road and laboratory cycling speeds (km x h(-1)) was found to be minimal for small individuals (mass = 65 kg and height = 1.738 m) but larger riders would appear to benefit from the fixed resistance in the laboratory compared with the progressively increasing drag due to increased body size that would be experienced in the field. This difference was found to be proportional to the cyclists' body surface area that we speculate might be associated with the cyclists' frontal surface area.  相似文献   

6.
To reduce aerodynamic resistance cyclists lower their torso angle, concurrently reducing Peak Power Output (PPO). However, realistic torso angle changes in the range used by time trial cyclists have not yet been examined. Therefore the aim of this study was to investigate the effect of torso angle on physiological parameters and frontal area in different commonly used time trial positions. Nineteen well-trained male cyclists performed incremental tests on a cycle ergometer at five different torso angles: their preferred torso angle and at 0, 8, 16 and 24°. Oxygen uptake, carbon dioxide expiration, minute ventilation, gross efficiency, PPO, heart rate, cadence and frontal area were recorded. The frontal area provides an estimate of the aerodynamic drag. Overall, results showed that lower torso angles attenuated performance. Maximal values of all variables, attained in the incremental test, decreased with lower torso angles (P < 0.001). The 0° torso angle position significantly affected the metabolic and physiological variables compared to all other investigated positions. At constant submaximal intensities of 60, 70 and 80% PPO, all variables significantly increased with increasing intensity (P < 0.0001) and decreasing torso angle (P < 0.005). This study shows that for trained cyclists there should be a trade-off between the aerodynamic drag and physiological functioning.  相似文献   

7.
The aims of this study were to compare the physiological demands of laboratory- and road-based time-trial cycling and to examine the importance of body position during laboratory cycling. Nine male competitive but non-elite cyclists completed two 40.23-km time-trials on an air-braked ergometer (Kingcycle) in the laboratory and one 40.23-km time-trial (RD) on a local road course. One laboratory time-trial was conducted in an aerodynamic position (AP), while the second was conducted in an upright position (UP). Mean performance speed was significantly higher during laboratory trials (UP and AP) compared with the RD trial (P < 0.001). Although there was no difference in power output between the RD and UP trials (P > 0.05), power output was significantly lower during the AP trial than during both the RD (P = 0.013) and UP trials (P = 0.003). Similar correlations were found between AP power output and RD power output (r = 0.85, P = 0.003) and between UP power output and RD power output (r = 0.87, P = 0.003). Despite a significantly lower power output in the laboratory AP condition, these results suggest that body position does not affect the ecological validity of laboratory-based time-trial cycling.  相似文献   

8.
This study examined aerodynamic properties and boundary layer stability in five cambered airfoils operating at the low Reynolds numbers encountered in motor racing. Numerical modelling was carried out in the flow regime characterised by Reynolds numbers 0.82–1.29 × 106. The design Reynolds number of 3 × 106 was used as a reference. Aerodynamics variables were computed using AeroFoil 2.2 software, which uses the vortex panel method and integral boundary layer equations. Validation of AeroFoil 2.2 software showed very good agreement between calculated aerodynamic coefficients and wind tunnel experimental data. Drag polars, lift/drag ratio, pitching moment coefficient, chordwise distributions (surface velocity ratio, pressure coefficient and boundary layer thickness), stagnation point, and boundary layer transition and separation were obtained at angles of attack from −4° to 12°. The NASA NLF(1)-0414F airfoil offers versatility for motor racing with a wide low-drag bucket, low minimum profile drag, high lift/drag ratio, laminar flow up to 0.7 chord, rapid concave pressure recovery, high resultant pressure coefficient and stall resistance at low Reynolds numbers. The findings have implications for the design of race car wings.  相似文献   

9.
ABSTRACT

The aim of this study was to assess the influence of different bike positions on the perception of fatigue, pain and comfort. Twenty cyclists underwent three tests that involved cycling for 45 min at their individual 50% peak aerobic power output while adopting different positions on the bike. Participants performed the cycling tests adopting three positions defined by two parameters (knee flexion angle [20°, 30°, 40°] and trunk flexion angle [35°, 45°, 55°]) in random order. Angles were measured using a 2D motion analysis system during cycling and applying Fonda’s correction factor. Perceptions of comfort, fatigue and pain were reported before the end of each test. The combination of 40° knee flexion and 35° trunk flexion was perceived as the most uncomfortable position. Moreover, greater knee flexion had a negative effect on trunk comfort, accompanied by greater levels of fatigue and pain perception in the anterior part of the thigh and knee. In conclusion, cyclists perceived the most comfortable position to be when the saddle height was within the recommended knee angle (30° calculated from the offset position or 40 ± 4.0° of absolute value). Upright trunk was found to be the most comfortable position for recreational cyclists, where aerodynamics is not so important. Cyclists’ bike perceptions should be taken into account when it comes to choosing the most beneficial position, since this can play a role in injury prevention and enhance cycling performance.  相似文献   

10.
Aerodynamics has such a profound impact on cycling performance at the elite level that it has infiltrated almost every aspect of the sport from riding position and styles, equipment design and selection, race tactics and training regimes, governing rules and regulations to even the design of new velodromes. This paper presents a review of the aspects of aerodynamics that are critical to understanding flows around cyclists under racing conditions, and the methods used to evaluate and improve aerodynamic performance at the elite level. The fundamental flow physics of bluff body aerodynamics and the mechanisms by which the aerodynamic forces are imparted on cyclists are described. Both experimental and numerical techniques used to investigate cycling aerodynamic performance and the constraints on implementing aerodynamic saving measures at the elite level are also discussed. The review reveals that the nature of cycling flow fields are complex and multi-faceted as a result of the highly three-dimensional and variable geometry of the human form, the unsteady racing environment flow field, and the non-linear interactions that are inherent to all cycling flows. Current findings in this field have and will continue to evolve the sport of elite cycling while also posing a multitude of potentially fruitful areas of research for further gains in cycling performance.  相似文献   

11.
Abstract

The aims of this study were to compare the physiological demands of laboratory- and road-based time-trial cycling and to examine the importance of body position during laboratory cycling. Nine male competitive but non-elite cyclists completed two 40.23-km time-trials on an air-braked ergometer (Kingcycle) in the laboratory and one 40.23-km time-trial (RD) on a local road course. One laboratory time-trial was conducted in an aerodynamic position (AP), while the second was conducted in an upright position (UP). Mean performance speed was significantly higher during laboratory trials (UP and AP) compared with the RD trial (P < 0.001). Although there was no difference in power output between the RD and UP trials (P > 0.05), power output was significantly lower during the AP trial than during both the RD (P = 0.013) and UP trials (P = 0.003). Similar correlations were found between AP power output and RD power output (r = 0.85, P = 0.003) and between UP power output and RD power output (r = 0.87, P = 0.003). Despite a significantly lower power output in the laboratory AP condition, these results suggest that body position does not affect the ecological validity of laboratory-based time-trial cycling.  相似文献   

12.
Although bike fitting is recommended to help reduce injury risk, little empirical evidence exists to indicate an association between bike fitting and injury incidence. The aim of the study was to determine the effect of bike fitting on self-reported injury, comfort, and pain while cycling from a worldwide survey of cyclists. A total of 849 cyclists completed an online questionnaire between February and October 2016. Questionnaire collected data on respondent demographics, cycling profile, bike fitting, comfort and pain while cycling, and injury history. The main predictor variable was bike fitting (yes, by the respondent, i.e. user bike fitting; yes, by a professional service; or no). Covariates included demographic and cycling profile characteristics. Logistic regression models estimated the odds of injury within the last 12 months, reporting a comfortable body posture while cycling, and not reporting pain while cycling. Odds ratios (OR) with 95% confidence intervals (CI) were reported. User bike fitting was associated with increased odds of reporting a comfortable posture (OR?=?2.28, 95%CI: 1.06, 4.68). User (OR?=?2.35; 95%CI: 1.48, 3.84) and professional bike fitting (OR?=?2.35; 95%CI: 1.42, 3.98) were both associated with increased odds of not reporting pain while cycling. No associations were found between bike fitting and injury within the last 12 months. In conclusion, we found an association between bike fitting and reported comfort and pain while cycling. We recommend integrating bike fitting into cycling maintenance. However, further studies with longer follow-up are necessary to determine the presence of an association between bike fitting and injury.  相似文献   

13.
In time trial cycling stage, aerodynamic properties of cyclists are one of the main factors that determine performances. Such aerodynamic properties are strongly dependent on the cyclist ability to get into the most suitable posture to have minimal projected frontal area facing the air. The accurate knowledge of the projected frontal area (A) is thus of interest to understand the performance better. This study aims for the first time at a model estimating accurately A as a function of anthropometric properties, postural variations of the cyclist and the helmet characteristics. From experiments carried out in a wind tunnel test-section, drag force measurements, 3D motion analysis and frontal view of the cyclists are performed. Computerized planimetry measurements of A are then matched with factors related to the cyclist posture and the helmet inclination and length. Data show that A can be fully represented by a rate of the cyclist body height, his body mass, inclination and length of his helmet. All the above-mentioned factors are thus taken into account in the present modelling and the prediction accuracy is then determined by comparisons between planimetry measurements and A values estimated using the model.  相似文献   

14.
In a number of sport disciplines characterized by high velocities, aerodynamic performance of sports apparel is a concern. The goal is often to reduce the aerodynamic drag force and thereby increase speed. In the design of optimized competition apparel the fabric properties will be very important. One fabric property which has traditionally been considered an influencing parameter on aerodynamic performance is the air permeability. In this paper the effect of air-permeability, treated as an independent variable, upon aerodynamic drag on a bluff body is investigated. Similar multilayer textiles with internal membranes regulating air permeability were tested on cylindrical models in wind tunnel experiments in order to identify a possible relation between air-permeability and drag force. A weak dependence of flow transition on air-permeability could be found, but this could be considered to have a limited effect on the aerodynamic performance of sports garments.  相似文献   

15.
Aerodynamic drag in cycling: methods of assessment   总被引:1,自引:0,他引:1  
When cycling on level ground at a speed greater than 14 m/s, aerodynamic drag is the most important resistive force. About 90% of the total mechanical power output is necessary to overcome it. Aerodynamic drag is mainly affected by the effective frontal area which is the product of the projected frontal area and the coefficient of drag. The effective frontal area represents the position of the cyclist on the bicycle and the aerodynamics of the cyclist-bicycle system in this position. In order to optimise performance, estimation of these parameters is necessary. The aim of this study is to describe and comment on the methods used during the last 30 years for the evaluation of the effective frontal area and the projected frontal area in cycling, in both laboratory and actual conditions. Most of the field methods are not expensive and can be realised with few materials, providing valid results in comparison with the reference method in aerodynamics, the wind tunnel. Finally, knowledge of these parameters can be useful in practice or to create theoretical models of cycling performance.  相似文献   

16.
Abstract

Aerodynamic and rolling resistances are the two major resistances that affect road cyclists on level ground. Because of reduced speeds and markedly different tyre-ground interactions, rolling resistance could be more influential in mountain biking than road cycling. The aims of this study were to quantify 1) aerodynamic resistance of mountain-bike cyclists in the seated position and 2) rolling resistances of two types of mountain-bike tyre (smooth and knobby) in three field surfaces (road, sand and grass) with two pressure inflations (200 and 400 kPa). Mountain-bike cyclists have an effective frontal area (product of projected frontal area and drag coefficient) of 0.357 ± 0.023 m2, with the mean aerodynamic resistance representing 8–35% of the total resistance to cyclists' motion depending on the magnitude of the rolling resistance. The smooth tyre had 21 ± 15% less rolling resistance than the knobby tyre. Field surface and inflation pressure also affected rolling resistance. These results indicate that aerodynamic resistance influences mountain-biking performance, even with lower speeds than road cycling. Rolling resistance is increased in mountain biking by factors such as tyre type, surface condition and inflation pressure that may also alter performance.  相似文献   

17.
We evaluated the effects of specific inspiratory muscle training on simulated time-trial performance in trained cyclists. Using a double-blind, placebo-controlled design, 16 male cyclists (VO2max = 64 +/- 2 ml x kg(-1) x min(-1); mean +/- s(x)) were assigned at random to either an experimental (pressure-threshold inspiratory muscle training) or sham-training control (placebo) group. Pulmonary function, maximum dynamic inspiratory muscle function and the physiological and perceptual responses to maximal incremental cycling were assessed. Simulated time-trial performance (20 and 40 km) was quantified as the time to complete pre-set amounts of work. Pulmonary function was unchanged after the intervention, but dynamic inspiratory muscle function improved in the inspiratory muscle training group (P < or = 0.05). After the intervention, the inspiratory muscle training group experienced a reduction in the perception of respiratory and peripheral effort (Borg CR10: 16 +/- 4% and 18 +/- 4% respectively; compared with placebo, P < or = 0.01) and completed the simulated 20 and 40 km time-trials faster than the placebo group [66 +/- 30 and 115 +/- 38 s (3.8 +/- 1.7% and 4.6 +/- 1.9%) faster respectively; P = 0.025 and 0.009]. These results support evidence that specific inspiratory muscle training attenuates the perceptual response to maximal incremental exercise. Furthermore, they provide evidence of performance enhancements in competitive cyclists after inspiratory muscle training.  相似文献   

18.
We evaluated the effects of specific inspiratory muscle training on simulated time-trial performance in trained cyclists. Using a double-blind, placebo-controlled design, 16 male cyclists (VO 2max = 64 - 2 ml·kg -1 ·min -1 ; mean - sx ¥ ) were assigned at random to either an experimental (pressure-threshold inspiratory muscle training) or sham-training control (placebo) group. Pulmonary function, maximum dynamic inspiratory muscle function and the physiological and perceptual responses to maximal incremental cycling were assessed. Simulated time-trial performance (20 and 40 km) was quantified as the time to complete pre-set amounts of work. Pulmonary function was unchanged after the intervention, but dynamic inspiratory muscle function improved in the inspiratory muscle training group ( P h 0.05). After the intervention, the inspiratory muscle training group experienced a reduction in the perception of respiratory and peripheral effort (Borg CR10: 16 - 4% and 18 - 4% respectively; compared with placebo, P h 0.01) and completed the simulated 20 and 40 km time-trials faster than the placebo group [66 - 30 and 115 - 38 s (3.8 - 1.7% and 4.6 - 1.9%) faster respectively; P = 0.025 and 0.009]. These results support evidence that specific inspiratory muscle training attenuates the perceptual response to maximal incremental exercise. Furthermore, they provide evidence of performance enhancements in competitive cyclists after inspiratory muscle training.  相似文献   

19.
Abstract

The most common bike fitting method to set the seat height is based on the knee angle when the pedal is in its lowest position, i.e. bottom dead centre (BDC). However, there is no consensus on what method should be used to measure the knee angle. Therefore, the first aim of this study was to compare three dynamic methods to each other and against a static method. The second aim was to test the intra-session reliability of the knee angle at BDC measured by dynamic methods. Eleven cyclists performed five 3-min cycling trials; three at different seat heights (25°, 30° and 35° knee angle at BDC according to static measure) and two at preferred seat height. Thirteen infrared cameras (3D), a high-speed camera (2D), and an electrogoniometer were used to measure the knee angle during pedalling, when the pedal was at the BDC. Compared to 3D kinematics, all other methods statistically significantly underestimated the knee angle (P = 0.00; η2 = 0.73). All three dynamic methods have been found to be substantially different compared to the static measure (effect sizes between 0.4 and 0.6). All dynamic methods achieved good intra-session reliability. 2D kinematics is a valid tool for knee angle assessment during bike fitting. However, for higher precision, one should use correction factor by adding 2.2° to the measured value.  相似文献   

20.
To determine the flight of a ski jumper it is essential to know what aerodynamic forces are acting on the ski jumper. However, few data on this are available, especially for a V-style ski jumping flight. We have measured the aerodynamic forces during the free flight phase for a V-style, as well as a parallel-style, ski jump by employing a full-size model in a wind tunnel. The aerodynamic force data, (drag, lift and pitching moment) were obtained to create an aerodynamic database. These forces are given in polynomial form as functions of the angle of attack, the body-ski (forward leaning) angle and the ski-opening (V-style) angle. Using the polynomial form database is a convenient way of obtaining the aerodynamic forces. Moreover, the wind tunnel was equipped with a ground effect plate to measure the aerodynamic forces during the landing phase. It was found that the difference between the lift with and without the ground effect plate increases with the ski-opening angle. The longitudinal stability in the pitching motion of a body-ski combination is also discussed on the basis of the pitching moment data. This indicates that a stable pitching oscillation of the body-ski combination may arise around an equilibrium point in the angle of attack, the trim angle of attack, during flight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号