首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The forward skating start is a fundamental skill for male and female ice hockey players. However, performance differences by athlete’s sex cannot be fully explained by physiological variables; hence, other factors such as skating technique warrant examination. Therefore, the purpose of this study was to evaluate the body movement kinematics of ice hockey skating starts between elite male and female ice hockey participants. Male (n = 9) and female (n = 10) elite ice hockey players performed five forward skating start accelerations. An 18-camera motion capture system placed on the arena ice surface captured full-body kinematics during the first seven skating start steps within 15 meters. Males’ maximum skating speeds were greater than females. Skating technique sex differences were noted: in particular, females presented ~10° lower hip abduction throughout skating stance as well as ~10° greater knee extension at initial ice stance contact, conspicuously followed by a brief cessation in knee extension at the moment of ice contact, not evident in male skaters. Further study is warranted to explain why these skating technique differences exist in relation to factors such as differences in training, equipment, performance level, and anthropometrics.  相似文献   

2.
ABSTRACT

The skating acceleration to maximal speed transition (sprint) is an essential skill that involves substantial lower body strength and effective propulsion technique. Coaches and athletes strive to understand this optimal combination to improve performance and reduce injury risk. Hence, the purpose of this study was to compare body centre of mass and lower body kinematic profiles from static start to maximal speed of high calibre male and female ice hockey players on the ice surface. Overall, male and female skaters showed similar centre of mass trajectories, though magnitudes differed. The key performance difference was the male’s greater peak forward skating speed (8.96 ± 0.44 m/s vs the females’ 8.02 ± 0.36 m/s, p < 0.001), which was strongly correlated to peak leg strength (R 2 = 0.81). Males generated greater forward acceleration during the initial accelerative steps, but thereafter, both sexes had similar stride-by-stride accelerations up to maximal speed. In terms of technique, males demonstrated greater hip abduction (p = 0.006) and knee flexion (p = 0.026) from ice contact to push off throughout the trials. For coaches and athletes, these findings underscore the importance of leg strength and widely planted running steps during the initial skating technique to achieve maximal skating speed over a 30 m distance.  相似文献   

3.
Abstract

The capturing of movements by means of wearable sensors has become increasingly popular in order to obtain sport performance measures during training or competition. The purpose of the current study was to investigate the feasibility of using body worn accelerometers to identify previous highlighted performance related biomechanical changes in terms of substantial differences across skill levels and skating phases. Twenty-two ice hockey players of different caliber were equipped with two 3D accelerometers, located on the skate and the waist, as they performed 30 m forward skating sprints on an ice rink. Two measures of the temporal stride characteristics (contact time and stride time) and one measure of the propulsive power (stride propulsion) of a skating stride were calculated and checked for discriminating effects across (i) skill levels and (ii) sprint phases as well as for their (iii) strength of association with the sprint performance (total sprint time). High caliber players showed an increased stride propulsion (+22%, P?<?0.05) and shorter contact time (?5%, P?<?0.05). All three analysed variables highlighted substantial biomechanical differences between the accelerative and constant velocity phases (P?<?0.05). Stride propulsion of acceleration strides primarily correlated to total sprint time (r?=??0.57, P?<?0.05). The results demonstrate the potential of accelerometers to assess skating technique elements such as contact time or elements characterizing the propulsive power such as center of mass acceleration, to gauge skating performance. Thus, the findings of this study might contribute to establishing wearable sensors for in-field ice hockey skating performance analysis.  相似文献   

4.
Little biomechanical research has been conducted recently on hockey skating despite the sport's worldwide appeal. One reason for this lack of biomechanical knowledge stems from the difficulty of collecting data. The lack of accuracy, the disputable realism of treadmills, and the large field of view required are some of the technical challenges that have to be overcome. The main objective of the current study was to improve our knowledge of the joint kinematics during the skating stroke. A second objective was to improve the data collection system we developed and the third was to establish if a kinematic progression exists in the hockey skating stroke similar to that in speed skating. Relative motions at the knee and ankle joints were computed using a joint coordinate system approach. The differences at the knee joints in push-offs indicated that the skating skill was progressively changing with each push-off. The relative stability of the ankle angles can be attributed to the design of the skate boots, which have recently become very rigid. Further research on ice hockey skating is warranted and should include more skaters and investigate the effect various starting strategies and variations in equipment have on skaters' performance.  相似文献   

5.
Little biomechanical research has been conducted recently on hockey skating despite the sport's worldwide appeal. One reason for this lack of biomechanical knowledge stems from the difficulty of collecting data. The lack of accuracy, the disputable realism of treadmills, and the large field of view required are some of the technical challenges that have to be overcome. The main objective of the current study was to improve our knowledge of the joint kinematics during the skating stroke. A second objective was to improve the data collection system we developed and the third was to establish if a kinematic progression exists in the hockey skating stroke similar to that in speed skating. Relative motions at the knee and ankle joints were computed using a joint coordinate system approach. The differences at the knee joints in push-offs indicated that the skating skill was progressively changing with each push-off. The relative stability of the ankle angles can be attributed to the design of the skate boots, which have recently become very rigid. Further research on ice hockey skating is warranted and should include more skaters and investigate the effect various starting strategies and variations in equipment have on skaters' performance.  相似文献   

6.
Ice hockey requires rapid transitions between skating trajectories to effectively navigate about the ice surface. Player performance relates in large part to effective change-of-direction manoeuvres, but little is known about how those skills are performed mechanically and the effect of equipment design on them. The purpose of this study was to observe the kinetics involved in those manoeuvres as well as to compare whether kinetic differences may result between two skate models of varying ankle mobility. Eight subjects with competitive ice hockey playing experience performed rapid lateral (90°) left and right change-of-direction manoeuvres. Kinetic data were collected using force strain gauge transducers on the blade holders of the skates. Significantly greater forces were applied by the outside skate (50–70% body weight, %BW) in comparison to the inside skate (12–24%BW, p < 0.05). Skate model and turn direction had no main effect, though significant mixed interactions between leg side (inside/outside) with skate model or turn direction (p < 0.05) were observed, with a trend for left-turn dominance. This study demonstrates the asymmetric dynamic behaviour inherent in skating change-of-direction tasks.  相似文献   

7.
刘锋 《冰雪运动》2014,(6):93-96
冰刀结构、冰刀研磨、运动服装等非运动员主体条件的技术创新不仅丰富了速度滑冰训练理论的完善,对速度滑冰技术的改进亦起到决定性作用。短道速滑运动员使用槽刃冰刀可以增大运动员弯道滑行时法线方向冰刀与冰面之间的斜面的支撑力,可以让运动员把身体向圆心方向倾斜的程度加大、产生更大的向心力,以更快的速度滑过弯道。在4轴联动数控磨床基础上设计一台专门加工短道速滑冰刀槽刃的自动磨刀机,技术关键是将冰刀刀片与砂轮轴布置在同一水平面上、使用单斜边砂轮,这样才可以为短道速滑冰刀磨出槽刃。短道速滑冰刀槽刃数控自动磨刀机还包括工件夹具、电源、数控装置、辅助装置等其他功能组件。  相似文献   

8.
The objectives of the study were to describe lower limb kinematics in three dimensions during the forward skating stride in hockey players and to contrast skating techniques between low- and high-calibre skaters. Participant motions were recorded with four synchronized digital video cameras while wearing reflective marker triads on the thighs, shanks, and skates. Participants skated on a specialized treadmill with a polyethylene slat bed at a self-selected speed for 1 min. Each participant completed three 1-min skating trials separated by 5 min of rest. Joint and limb segment angles were calculated within the local (anatomical) and global reference planes. Similar gross movement patterns and stride rates were observed; however, high-calibre participants showed a greater range and rate of joint motion in both the sagittal and frontal planes, contributing to greater stride length for high-calibre players. Furthermore, consequent postural differences led to greater lateral excursion during the power stroke in high-calibre skaters. In conclusion, specific kinematic differences in both joint and limb segment angle movement patterns were observed between low- and high-calibre skaters.  相似文献   

9.
Abstract

The purpose of this study was to explore the techniques of ice skating acceleration through analysis of specific characteristics of the movement pattern during a “front start” skating task. Two Locam 16 mm cameras operating at 100 frames per second were used to record side and overhead views of the first 6.0m of the skating starts of 69 male subjects. Data were collected on three skating start criteria, three structural variables, and twelve performance variables measured over the first three strides of the start. Summary statistics were generated and Pearson product moment correlation analysis was used to assess relationships between the criteria and performance variables. In addition, stepwise multiple regression analysis was used to predict time to skate 6.0m from a combination of the structural and performance variables. Results revealed that the mean time taken to skate 6.0m was 1.95 sec; the mean instantaneous velocity at the 6.0 mark was 5.75 m/s; and the mean average acceleration over 6.0m was 2.96m/s2. Evaluation of correlation coefficients, the regression model and summary statistics resulted in several conclusions: (1) There is a statistically significant positive relationship between velocity attained and the average rate of acceleration over a 6.0m distance in a front style skating start. (2) There are statistically significant negative relationships between both mean acceleration and final instantaneous velocity, and the time taken to skate 6.0m in a front style skating start. (3) In general, the stride pattern associated with a high rate of acceleration and a minimal skating time in a front style skating start includes: a high stride rate, significant forward lean at the point of touchdown of the recovery skate, short single support periods, and placement of the recovery foot below the hip of the recovery leg at the end of the single support period.  相似文献   

10.
Sport-specific resistance training, through limb loading, can be a complimentary training method to traditional resistance training by loading the working muscles during all phases of a specific movement. The purpose of this study was to examine the acute effects of skating with an additional load on the skate, using a skate weight prototype, on kinematics, kinetics, and muscle activation during the acceleration phase while skating on a synthetic ice surface. 10 male hockey skaters accelerated from rest (standing erect with knees slightly bent) under four non-randomized load conditions: baseline 1 (no weight), light (0.9 kg per skate), heavy (1.8 kg per skate), and baseline 2 (no weight). Skating with additional weight caused athletes to skate slower (p < 0.001; η2 = 0.551), and led to few changes in kinematics: hip sagittal range of motion (ROM) decreased (2.2°; p = 0.032; η2 = 0.274), hip transverse ROM decreased (3.4°; p < 0.001; η2 = 0.494), ankle sagittal ROM decreased (2.3°; p = 0.022; η2 = 0.295), and knee sagittal ROM increased (7.8°; < 0.001, η2 = 0.761). Overall, weighted skates decreased skating velocity, but athletes maintained similar muscle activation profiles (magnitude and trends) with minor changes to their skating kinematics.  相似文献   

11.
The objectives of the study were to describe lower limb kinematics in three dimensions during the forward skating stride in hockey players and to contrast skating techniques between low- and high-calibre skaters. Participant motions were recorded with four synchronized digital video cameras while wearing reflective marker triads on the thighs, shanks, and skates. Participants skated on a specialized treadmill with a polyethylene slat bed at a self-selected speed for 1 min. Each participant completed three 1-min skating trials separated by 5 min of rest. Joint and limb segment angles were calculated within the local (anatomical) and global reference planes. Similar gross movement patterns and stride rates were observed; however, high-calibre participants showed a greater range and rate of joint motion in both the sagittal and frontal planes, contributing to greater stride length for high-calibre players. Furthermore, consequent postural differences led to greater lateral excursion during the power stroke in high-calibre skaters. In conclusion, specific kinematic differences in both joint and limb segment angle movement patterns were observed between low- and high-calibre skaters.  相似文献   

12.
通过对短道速滑弯道技术动作和速度滑冰技术动作的分析,认为短道弯道技术练习对提高速度滑冰运动员的弯道能力具有积极的影响作用。速度滑冰弯道技术中使用短道弯道技术练习具有一定的优势,并从短道和速度滑冰运动员弯道下肢动作,即髋膝踝的角度、身体倾斜度、蹬冰角度以及技战术与训练等方面,阐释短道速滑和速度滑冰运动员之间的动作结合点,分析利用短道弯道技术优化速度滑冰技术动作的合理性,提出短道弯道训练对提高速度滑冰运动员弯道技术的重要作用。  相似文献   

13.
This study performed an analysis of the push-off forces of elite-short-track speed skaters using a new designed instrumented short-track speed skate with the aim to improve short-track skating performance. Four different skating strokes were distinguished for short-track speed skaters at speed. The strokes differed in stroke time, force level in both normal and lateral directions, and the centre of pressure (COP) on the blade. Within the homogeneous group of male elite speed skaters (N = 6), diversity of execution of the force patterns in the four phases of skating was evident, while skating at the same velocities. The male participants (N = 6) with a better personal record (PR) kept the COP more to the rear of their blades while hanging into the curve (r = 0.82, p < 0.05), leaving the curve (r = 0.86, p < 0.05), and entering the straight (r = 0.76, p < 0.10). Furthermore, the male skaters with a better PR showed a trend of a lower lateral peak force while entering the curve (r = 0.74, p < 0.10). Females showed a trend towards applying higher body weight normalised lateral forces than the males, while skating at imposed lower velocities.  相似文献   

14.
The arm swing in hockey skating can have a positive effect on the forces produced by each skate, and the resulting velocity from each push off. The main purpose of this study was to measure the differences in ground reaction forces (GRFs) produced from an anteroposterior versus a mediolateral style hockey skating arm swing. Twenty-four elite-level female hockey players performed each technique while standing on a ground-mounted force platform, and all trials were filmed using two video cameras. Force data was assessed for peak scaled GRFs in the frontal and sagittal planes, and resultant GRF magnitude and direction. Upper limb kinematics were assessed from the video using Dartfish video analysis software, confirming that the subjects successfully performed two distinct arm swing techniques. The mediolateral arm swing used a mean of 18.38° of glenohumeral flexion/extension and 183.68° of glenohumeral abduction/adduction while the anteroposterior technique used 214.17° and 28.97° respectively. The results of this study confirmed that the mediolateral arm swing produced 37% greater frontal plane and 33% less sagittal plane GRFs than the anteroposterior arm swing. The magnitudes of the resultant GRFs were not significantly different between the two techniques; however, the mediolateral technique produced a resultant GRF with a significantly larger angle from the direction of travel (44.44°) as compared to the anteroposterior technique (31.60°). The results of this study suggest that the direction of GRFs produced by the mediolateral arm swing more closely mimic the direction of lower limb propulsion during the skating stride.  相似文献   

15.
少年儿童速滑运动员的平衡支撑能力训练   总被引:11,自引:11,他引:0  
速滑运动是技术性很强的体能类项目,平衡支撑能力是速滑技术的基础,尤其是少年儿童速滑运动员更应加强平衡支撑能力的训练。认为少年儿童速滑运动员应注重基本功训练,平衡支撑能力是速滑技术重要的基本功,是早蹬冰技术的基础,并分析总结了多次获得世界冠军的速滑运动员王曼利进行平衡支撑能力训练的方法,主要介绍了其应用平衡球训练平衡支撑能力的主要方法,以及冰上平衡支撑能力训练方法,旨在为少年儿童速滑运动员训练的教练员提供参考。  相似文献   

16.
Little is known about the implications of motor asymmetries for skilled performers in dynamic, time-constrained, team-based activities such as ice hockey. Three studies were conducted to examine laterality differences in ice hockey. Study 1 investigated laterality distributions across three leagues of increasing calibre. Among skating players, skill level was related to changes in laterality patterns based on position, while a significant increase in the proportion of left-catching goaltenders was found across the levels of competition. Study 2 examined laterality differences through a 90-year retrospective analysis of player performance measures within an evolving system. Regression analysis indicated right shot preferences were associated with scoring more goals, while left shot preferences were related to assisting more goals. Among goaltenders, right-catching preferences were associated with an increased save percentage compared with left-catching goaltenders. In Study 3, player-goaltender shootout interactions revealed left shooters to be less successful against right-catching goaltenders. Results suggest ice hockey supports models of skilled perception, and provide new information in the area of laterality and strategic frequency-dependent effects in ice hockey.  相似文献   

17.
The purpose of this study was to develop a portable force measurement system for ice hockey skating. The system consisted of three strain gauge pairs affixed to an ice hockey skate’s blade holder with wire leads connected to a microprocessor controlled data acquisition device carried in a backpack worn by the skater. The configuration of the strain gauges simultaneously determined the vertical and medial–lateral force components experienced by the blade holder with a resolution accuracy of 1.9 N and a coefficient of variation of 9.2%. On-ice testing of this system with subjects performing forward start, acceleration, and constant velocity skating permitted unencumbered, natural movement and demonstrated clear, unambiguous signal responses, high trial-to-trial repeatability, and easy data retrieval. The practicality and accuracy of this testing approach have many applications, such as a quantitative tool for skating force assessment to aid athletes and coaches, as well as providing the means to examine other skill-specific dynamics.  相似文献   

18.
Adductor strain injuries are prevalent in ice hockey. It has long been speculated that adductor muscular strains may be caused by repeated eccentric contractions which decelerate the leg during a stride. The purpose of this study was to investigate the relationship of skating speed with muscle activity and lower limb kinematics, with a particular focus on the role of the hip adductors. Seven collegiate ice hockey players consented to participate. Surface electromyography (EMG) and kinematics of the lower extremities were measured at three skating velocities 3.33 m/s (slow), 5.00 m/s (medium) and 6.66 m/s (fast). The adductor magnus muscle exhibited disproportionately larger increases in peak muscle activation and significantly prolonged activation with increased speed. Stride rate and stride length also increased significantly with skating velocity, in contrast, hip, knee and ankle total ranges of motion did not. To accommodate for the increased stride rate with higher skating speeds, the rate of hip abduction increased significantly in concert with activations of adductor magnus indicating a substantial eccentric contraction. In conclusion, these findings highlight the functional importance of the adductor muscle group and hip abduction–adduction in skating performance as well as indirectly support the notion that groin strain injury potential increases with skating speed.  相似文献   

19.
Ice friction of flared ice hockey skate blades   总被引:2,自引:0,他引:2  
In ice hockey, skating performance depends on the skill and physical conditioning of the players and on the characteristics of their equipment. CT Edge have recently designed a new skate blade that angles outward near the bottom of the blade. The objective of this study was to compare the frictional characteristics of three CT Edge blades (with blade angles of 4 degrees, 60, and 8 degrees, respectively) with the frictional characteristics of a standard skate blade. The friction coefficients of the blades were determined by measuring the deceleration of an aluminium test sled equipped with three test blades. The measurements were conducted with an initial sled speed of 1.8 m s(-1) and with a load of 53 kg on each blade. The friction coefficient of the standard blades was 0.0071 (s = 0.0005). For the CT Edge blades with blade angles of 4 degrees, 6 degrees, and 8 degrees, friction coefficients were lower by about 13%, 21%, and 22%, respectively. Furthermore, the friction coefficients decreased with increasing load. The results of this study show that widely accepted paradigms such as "thinner blades cause less friction" need to be revisited. New blade designs might also be able to reduce friction in speed skating, figure skating, bobsledding, and luge.  相似文献   

20.
对第17、18届冬奥会前8名运动员500m 运动成绩及起跑犯规次数进行统计,结果表明,使用新式冰刀后500m 运动成绩虽提高显著,但起跑犯规次数及被判罚出场的人数也是历届奥运会中罕见的,表明运动员在使用新式冰刀起跑技术方面存在一定问题。为此,对哈尔滨市体工队44名速滑运动员在使用新式冰刀的情况下采用蛙式起跑和非点冰站立式起跑两种方法进行实验研究,结果表明,采用蛙式起跑重心低,起动时间短,起跑前冲力大,不易犯规。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号