首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
BackgroundThere are limited data on factors that predict an increased risk of multiple injuries among distance runners. The objective of this study was to determine risk factors that are predictive of individual runners with a high annual multiple injury risk (MIR).MethodsA retrospective, cross-sectional study at 4 annual (2012–2015) Two Oceans 21.1 km and 56.0 km races in South Africa with 75,401 consenting race entrants. Running-related injury data were collected retrospectively through an online pre-race medical screening questionnaire. The average number of injuries for each runner every year was calculated by taking a runner's race entry history and injury history into account and categorizing entrants into 4 MIR categories (high, intermediate, low, and very low (reference)). Multiple logistic regression modeling (odds ratios) was used to determine whether the following factors were predictive of a high MIR (average > 1 injury/year): demographics, training and racing, chronic-disease history (composite chronic disease score (CCDS)), and history of allergies.ResultsOf all entrants, 9.2% reported at least 1 injury, and 0.4% of entrants were in the high MIR category; the incidence rate was 2.5 injuries per 10 runner-years (95% confidence interval (95%CI): 2.4–2.7). Significant factors predictive of runners in the high MIR category were: running for > 20 years: OR = 2.0 (95%CI: 1.3–3.1; p = 0.0010); a higher CCDS: OR = 2.2 (95%CI: 2.0–2.4; p < 0.0001); and a history of allergies: OR = 2.8 (95%CI: 2.0–3.8; p < 0.0001).ConclusionRunners who have been running recreationally for > 20 years and those with multiple chronic diseases or a history of allergies were at higher risk of multiple running-related injuries. This high-risk group can be targeted for further study and possible injury-prevention interventions.  相似文献   

2.
Background: Many footwear characteristics are argued as risk factors for running related injuries (RRI). Several footwear assessment tools are available; however, their use in studies of RRI is unknown. Objective: This systematic review evaluated the characteristics and methods of assessing footwear in studies of RRI. Design: Five online databases were searched for studies on adult runners, in running style footwear, who experienced running-related pain or injury. The methodological quality of included articles was independently assessed by two raters using a modified Downs and Black checklist. Study and participant characteristics, footwear assessment tools used, and footwear characteristics reported were extracted for qualitative synthesis. Results: Twenty-four articles were included in the review. Low risk of bias was determined for 11 (44%) of the included studies. Twenty-eight different footwear characteristics were grouped into four categories: nomenclature, measurements, qualitative features, and subjective features. Fifteen different methods for assessing the 28 footwear characteristics were reported among the included studies. Only three methods were described previously, as valid and reliable. Conclusion: Differences in assessing footwear may mask the link between footwear characteristics and injury risk. Systematic footwear assessments and nomenclature are needed to evaluate the effects of footwear characteristics on RRI.  相似文献   

3.
Introduction: Many factors may contribute to running-related injury. These include fatigue and footwear, the combination of which has rarely been studied, in particular with reference to barefoot running, recently advocated as a method to reduce injury risk. Methods: Twenty-two runners (12 well-trained and 10 trained) participated in a 10?km fatiguing trial. Knee and ankle joint kinematics and kinetics and electromyography were assessed during overground running in the barefoot and shod condition. This was performed pre- and post-fatigue using a motion capture system and force platforms. Results: Initial loading rate increased in the trained runners when barefoot but not shod. Shod knee stiffness increased in both groups after fatigue, whereas barefoot knee stiffness decreased only in the trained group. A reduction in barefoot bicep femoris pre-activation was found in both groups. During stance, a reduction in vastus lateralis and biceps femoris and an increase in tibialis anterior activity were found over time in both groups and conditions. Trained runners decreased gluteus medius and increased lateral gastrocnemius median frequency for both conditions after fatigue. Conclusion: When fatigued, gait adjustments in habitually shod runners may increase injury risk when running barefoot. Training status may be a risk factor for injury, as less-trained runners experience muscular fatigue changes that may compromise ground reaction force attenuation. Caution is recommended when transitioning to pure barefoot running.  相似文献   

4.
BackgroundRunning is becoming an increasingly popular activity among Americans with over 50 million participants. Running shoe research and technology has continued to advance with no decrease in overall running injury rates. A growing group of runners are making the choice to try the minimal or barefoot running styles of the pre-modern running shoe era. There is some evidence of decreased forces and torques on the lower extremities with barefoot running, but no clear data regarding how this corresponds with injuries. The purpose of this survey study was to examine factors related to performance and injury in runners who have tried barefoot running.MethodsThe University of Virginia Center for Endurance Sport created a 10-question survey regarding barefoot running that was posted on a variety of running blogs and Facebook pages. Percentages were calculated for each question across all surveys. Five hundred and nine participants responded with over 93% of them incorporating some type of barefoot running into their weekly mileage.ResultsA majority of the participants (53%) viewed barefoot running as a training tool to improve specific aspects of their running. However, close to half (46%) viewed barefoot training as a viable alternative to shoes for logging their miles. A large portion of runners initially tried barefoot running due to the promise of improved efficiency (60%), an attempt to get past injury (53%) and/or the recent media hype around the practice (52%). A large majority (68%) of runners participating in the study experienced no new injuries after starting barefoot running. In fact, most respondents (69%) actually had their previous injuries go away after starting barefoot running. Runners responded that their previous knee (46%), foot (19%), ankle (17%), hip (14%), and low back (14%) injuries all proceeded to improve after starting barefoot running.ConclusionPrior studies have found that barefoot running often changes biomechanics compared to shod running with a hypothesized relationship of decreased injuries. This paper reports the result of a survey of 509 runners. The results suggest that a large percentage of this sample of runners experienced benefits or no serious harm from transitioning to barefoot or minimal shoe running.  相似文献   

5.
Abstract

The objective of this study was to compare the three-dimensional lower extremity running kinematics of young adult runners and elderly runners. Seventeen elderly adults (age 67–73 years) and 17 young adults (age 26–36 years) ran at 3.1 m · s?1 on a treadmill while the movements of the lower extremity during the stance phase were recorded at 120 Hz using three-dimensional video. The three-dimensional kinematics of the lower limb segments and of the ankle and knee joints were determined, and selected variables were calculated to describe the movement. Our results suggest that elderly runners have a different movement pattern of the lower extremity from that of young adults during the stance phase of running. Compared with the young adults, the elderly runners had a substantial decrease in stride length (1.97 vs. 2.23 m; P = 0.01), an increase in stride frequency (1.58 vs. 1.37 Hz; P = 0.002), less knee flexion/extension range of motion (26 vs. 33°; P = 0.002), less tibial internal/external rotation range of motion (9 vs. 12°; P < 0.001), larger external rotation angle of the foot segment (toe-out angle) at the heel strike (?5.8 vs. ?1.0°; P = 0.009), and greater asynchronies between the ankle and knee movements during running. These results may help to explain why elderly individuals could be more susceptible to running-related injuries.  相似文献   

6.
The objective of this study was to compare the three-dimensional lower extremity running kinematics of young adult runners and elderly runners. Seventeen elderly adults (age 67-73 years) and 17 young adults (age 26-36 years) ran at 3.1 m x s(-1) on a treadmill while the movements of the lower extremity during the stance phase were recorded at 120 Hz using three-dimensional video. The three-dimensional kinematics of the lower limb segments and of the ankle and knee joints were determined, and selected variables were calculated to describe the movement. Our results suggest that elderly runners have a different movement pattern of the lower extremity from that of young adults during the stance phase of running. Compared with the young adults, the elderly runners had a substantial decrease in stride length (1.97 vs. 2.23 m; P = 0.01), an increase in stride frequency (1.58 vs. 1.37 Hz; P = 0.002), less knee flexion/extension range of motion (26 vs. 33 degrees ; P = 0.002), less tibial internal/external rotation range of motion (9 vs. 12 degrees ; P < 0.001), larger external rotation angle of the foot segment (toe-out angle) at the heel strike (-5.8 vs. -1.0 degrees ; P = 0.009), and greater asynchronies between the ankle and knee movements during running. These results may help to explain why elderly individuals could be more susceptible to running-related injuries.  相似文献   

7.
ABSTRACT

Hill running is often used as a foundational training mechanism to build strength and speed. Distance runners in particular are at an increased likelihood of encountering steep hills during training runs. There is limited research regarding downhill running, and there is no research available on the biomechanics of females specifically during downhill running. The purpose of this study was to quantify the differences in loading when running downhill at different grades compared to a level surface in female distance runners to determine the potential risk for injury. Fifteen female distance runners (age: 23.5 ± 4.9 y), who ran 56.3 ± 20.9 km a week participated in this study. Participants ran on a force-instrumented treadmill at 4.0 m/s for 2 min at 0%, ?5%, ?10%, ?15%, and ?20% grades, with 5 min of rest between conditions. Study findings showed increased impact forces (< 0.001), and increased loading rates (< 0.001) with increasing downhill grades compared to level. These results indicate a significantly greater risk of overuse injury to the lower extremity with steeper downhill grades. Individuals need to be aware of these risks to plan and implement training programmes that will increase performance while minimising injury risk.  相似文献   

8.
BackgroundSegment coordination variability (CV) is a movement pattern associated with running-related injuries. It can also be adversely affected by a prolonged run. However, research on this topic is currently limited. The purpose of this study was to investigate the effects of a prolonged run on segment CV and vertical loading rates during a treadmill half marathon.MethodsFifteen healthy runners ran a half marathon on an instrumental treadmill in a biomechanical laboratory. Synchronized kinematic and kinetic data were collected every 2 km (from 2 km until 20 km), and the data were processed by musculoskeletal modeling. Segment CVs were computed from the angle-angle plots of selected pelvis-thigh, thigh-shank, and shank-rearfoot couplings using a modified vector coding technique. The loading rate of vertical ground reaction force was also calculated. A one-way MANOVA with repeated measures was performed on each of the outcome variables to examine the main effect of running mileage.ResultsSignificant effects of running mileage were found on segment CVs (p ≤ 0.010) but not on loading rate (p = 0.881). Notably, during the early stance phase, the CV of pelvis frontal vs. thigh frontal was significantly increased at 20 km compared with the CV at 8 km (g = 0.59, p = 0.022). The CV of shank transverse vs. rearfoot frontal decreased from 2 km to 8 km (g = 0.30, p = 0.020) but then significantly increased at both 18 km (g = 0.05, p < 0.001) and 20 km (g = 0.36, p < 0.001).ConclusionAt the early stance, runners maintained stable CVs on the sagittal plane, which could explain the unchanged loading rate throughout the half marathon. However, increased CVs on the frontal/transverse plane may be an early sign of fatigue and indicative of possible injury risk. Further studies are necessary for conclusive statements in this regard.  相似文献   

9.
BackgoundBarefoot (BF) running has recently increased in popularity with claims that it is more natural and may result in fewer injuries due to a reduction in impact loading. However, novice BF runners do not necessarily immediately switch to a forefoot strike pattern. This may increase mechanical parameters such as loading rate, which has been associated with certain running-related injuries, specifically, tibial stress fractures, patellofemoral pain, and plantar fasciitis. The purpose of this study was to examine changes in loading parameters between typical shod running and instructed BF running with real-time force feedback.MethodsForty-nine patients seeking treatment for a lower extremity injury ran on a force-sensing treadmill in their typical shod condition and then BF at the same speed. While BF they received verbal instruction and real-time feedback of vertical ground reaction forces.ResultsWhile 92% of subjects (n = 45) demonstrated a rearfoot strike pattern when shod, only 2% (n = 1) did during the instructed BF run. Additionally, while BF 47% (n = 23) eliminated the vertical impact transient in all eight steps analyzed. All loading variables of interest were significantly reduced from the shod to instructed BF condition. These included maximum instantaneous and average vertical loading rates of the ground reaction force (p < 0.0001), stiffness during initial loading (p < 0.0001), and peak medial (p = 0.001) and lateral (p < 0.0001) ground reaction forces and impulses in the vertical (p < 0.0001), medial (p = 0.047), and lateral (p < 0.0001) directions.ConclusionAs impact loading has been associated with certain running-related injuries, instruction and feedback on the proper forefoot strike pattern may help reduce the injury risk associated with transitioning to BF running.  相似文献   

10.
BackgroundThe few previous studies that focused on the effects of compression garments (CG) on distance running performance have simultaneously measured electromyogram, physiological, and perceptual parameters. Therefore, this study investigated the effects of CG on muscle activation and median frequency during and after distance running, as well as blood-lactate concentration and rating of perceived exertion (RPE) during distance running.MethodsEight healthy male recreational runners were recruited to randomly perform two 40 min treadmill running trials, one with CG, and the other with control garment made of normal cloth. The RPE and the surface electromyography (EMG) of 5 lower extremity muscles including gluteus maximus (GM), rectus femoris (RF), semitendinosus (ST), tibialis anterior (TA), and gastrocnemius (GAS) were measured during the running trial. The blood-lactate levels before and after the running trial were measured.ResultsWearing CG led to significant lower muscle activation (p < 0.05) in the GM (decreased 7.40%–14.31%), RF (decreased 4.39%–4.76%), and ST (decreased 3.42%–7.20%) muscles; moreover, significant higher median frequency (p < 0.05) in the GM (increased 5.57%) and ST (increased 10.58%) muscles. Wearing CG did not alter the RPE values or the blood-lactate levels (p > 0.05).ConclusionWearing CG was associated with significantly lower muscle activation and higher median frequency in the running-related key muscles during distance running. This finding suggested that wearing CG may improve muscle function, which might enhance running performance and prevent muscle fatigue.  相似文献   

11.
核心力量训练对大学生长跑运动员长跑技术有明显的促进作用,尤其在增强长跑技术的稳定性及技术动作的高效性上有明显作用;核心力量的增强改善了大学生长跑运动员后蹬力量的传导及其身体协调性。同时,核心力量的增强能够达到提高专项运动成绩的效果,核心力量稳定性的提升能够起到降低运动损伤的作用。在大学生运动员训练过程中加入核心力量训练,是使学生肢体协调发展、提升运动水平、降低运动损伤风险及贯彻终身体育的有效途径,应该在今后的日常训练中提高核心力量训练在总训练量中所占的比重。  相似文献   

12.
There is conflicting evidence on the association between lower limb alignment characteristics and the incidence of running-related injury (RRI). Therefore, the primary aim of this study was to investigate the association between lower limb alignment characteristics and the incidence proportion of RRI in a convenience sample of recreational runners. A total of 89 recreational runners were included in this prospective cohort study. These participants had been running for at least six months and were injury-free at baseline. Lower limb alignment measurements were conducted in order to calculate lower limb discrepancy, Q-angle, subtalar angle and plantar index. All participants also answered a baseline and biweekly online surveys about their running routine, history of RRI and newly developed RRI over a period of 12 weeks. The prevalence of previous RRI and the 12-week incidence proportion of new RRI were calculated. Logistic regression analysis was performed to estimate the association between lower limb length discrepancy, Q-angle, subtalar angle and plantar ach index with the incidence proportion of RRI. The prevalence of previous RRI was 55.1% (n?=?49). The 12-week incidence proportion of new RRI was 27.0% (n?=?24). Muscle injuries and tendinopathies were the main types of RRI identified. The lower leg and the knee were the main anatomical regions affected. We did not find significant associations between lower limb length discrepancy, Q-angle, subtalar angle and plantar arch index and injury occurrence.  相似文献   

13.
ABSTRACT

Males and females demonstrate unique running mechanics that may contribute to sex-related differences in common running related injuries. Understanding differences in muscle forces during running may inform intervention approaches, such as gait retraining addressing muscle force distribution. The purpose of this study was to compare muscle force characteristics and inter-trial variability between males and females during running. Twenty female and 14 male collegiate cross-country runners were examined. Three-dimensional kinetic and kinematic data were collected during overground running and used to estimate muscle forces via musculoskeletal modelling. Principle components analysis was used to capture the primary sources of variance from the muscle force waveforms. The magnitude of the forces for the hamstrings, gastrocnemius, and soleus muscles were higher across the majority of stance in male runners regardless of footstrike pattern. Males also demonstrated greater inter-trial variability in the timing of the peak gluteus maximus force and the magnitude of local peaks in the gastrocnemius force waveform. Male and female collegiate cross-country runners appear to employ unique lower extremity muscle force characteristics during overground running.  相似文献   

14.
15.
BackgroundHamstring injury is one of the most common injuries in sports involving sprinting. Hamstring flexibility and strength are often considered to be modifiable risk factors in hamstring injury. Understanding the effects of hamstring flexibility or strength training on the biomechanics of the hamstring muscles during sprinting could assist in improving prevention strategies and rehabilitation related to these injuries. The purpose of this study was to determine the effects of altering hamstring flexibility or strength on peak hamstring musculotendinous strain during sprinting.MethodsA total of 20 male college students (aged 18–24 years) participated and were randomly assigned to either a flexibility intervention group or a strength intervention group. Each participant executed exercise training 3 times a week for 8 weeks. Flexibility, sprinting, and isokinetic strength testing were performed before and after the 2 interventions. Paired t tests were performed to determine hamstring flexibility or strength intervention effects on optimal hamstring musculotendinous lengths and peak hamstring musculotendinous strains during sprinting.ResultsParticipants in the flexibility intervention group significantly increased the optimal musculotendinous lengths of the semimembranosus and biceps long head (p ≤ 0.026) and decreased peak musculotendinous strains in all 3 bi-articulate hamstring muscles (p ≤ 0.004). Participants in the strength-intervention group significantly increased the optimal musculotendinous lengths of all 3 hamstring muscles (p ≤ 0.041) and significantly decreased their peak musculotendinous strain during sprinting (p ≤ 0.017).ConclusionIncreasing hamstring flexibility or strength through exercise training may assist in reducing the risk of hamstring injury during sprinting for recreational male athletes.  相似文献   

16.
跑步引起相关损伤非常普遍,国外研究证据显示每年有40—50%运动人群经历跑步相关的损伤。一些潜在危险因素可能导致运动损伤,如力量、生物力学、拉伸练习、准备活动、营养、运动鞋和心理因素等,调节这些危险因素可能有助于预防运动损伤。  相似文献   

17.
Purpose: Overuse injuries are common in sport, but complete understanding of injury risk factors remains incomplete. Although biomechanical studies frequently examine musculoskeletal injury mechanisms, human movement variability studies aim to better understand neuromotor functioning, with proposed connections between overuse injury mechanisms and changes in motor variability. Method: In a narrative review, we discuss the variability-overuse injury hypothesis, which suggests repeated load application leads to mechanical tissue breakdown and subsequent injury when exceeding the rate of physiological adaptation. Due to the multidisciplinary nature of this hypothesis, we incorporate concepts from motor control, neurophysiology, biomechanics, as well as research design and data analysis. We therefore summarize multiple perspectives while proposing theoretical relationships between movement variability and lower extremity overuse injuries. Results: Experimental data are presented and summarized from published experiments examining interactions between experimental task demands and movement variability in the context of drop landing movements, along with comparisons to previous movement variability studies. Conclusion: We provide a conceptual framework for sports medicine researchers interested in predicting and preventing sports injuries. Under performance conditions with greater task demands, we predict reduced trial-to-trial movement variability that could increase the likelihood of overuse injuries.  相似文献   

18.
BackgroundThe forefoot running footfall pattern has been suggested to reduce the risk of developing running related overuse injuries due to a reduction of impact related variables compared with the rearfoot running footfall pattern. However, only time-domain impact variables have been compared between footfall patterns. The frequency content of the impact shock and the degree to which it is attenuated may be of greater importance for injury risk and prevention than time-domain variables. Therefore, the purpose of this study was to determine the differences in head and tibial acceleration signal power and shock attenuation between rearfoot and forefoot running.MethodsNineteen habitual rearfoot runners and 19 habitual forefoot runners ran on a treadmill at 3.5 m/s using their preferred footfall patterns while tibial and head acceleration data were collected. The magnitude of the first and second head acceleration peaks, and peak positive tibial acceleration were calculated. The power spectral density of each signal was calculated to transform the head and tibial accelerations in the frequency domain. Shock attenuation was calculated by a transfer function of the head signal relative to the tibia.ResultsPeak positive tibial acceleration and signal power in the lower and higher ranges were significantly greater during rearfoot than forefoot running (p < 0.05). The first and second head acceleration peaks and head signal power were not statistically different between patterns (p > 0.05). Rearfoot running resulted in significantly greater shock attenuation for the lower and higher frequency ranges as a result of greater tibial acceleration (p < 0.05).ConclusionThe difference in impact shock frequency content between footfall patterns suggests that the primary mechanisms for attenuation may differ. The relationship between shock attenuation mechanisms and injury is not clear but given the differences in impact frequency content, neither footfall pattern may be more beneficial for injury, rather the type of injury sustained may vary with footfall pattern preference.  相似文献   

19.
Abstract

Although the biomechanical properties of the various types of running foot strike (rearfoot, midfoot, and forefoot) have been studied extensively in the laboratory, only a few studies have attempted to quantify the frequency of running foot strike variants among runners in competitive road races. We classified the left and right foot strike patterns of 936 distance runners, most of whom would be considered of recreational or sub-elite ability, at the 10 km point of a half-marathon/marathon road race. We classified 88.9% of runners at the 10 km point as rearfoot strikers, 3.4% as midfoot strikers, 1.8% as forefoot strikers, and 5.9% of runners exhibited discrete foot strike asymmetry. Rearfoot striking was more common among our sample of mostly recreational distance runners than has been previously reported for samples of faster runners. We also compared foot strike patterns of 286 individual marathon runners between the 10 km and 32 km race locations and observed increased frequency of rearfoot striking at 32 km. A large percentage of runners switched from midfoot and forefoot foot strikes at 10 km to rearfoot strikes at 32 km. The frequency of discrete foot strike asymmetry declined from the 10 km to the 32 km location. Among marathon runners, we found no significant relationship between foot strike patterns and race times.  相似文献   

20.
The purpose of this study was to compare the lower extremity inter-joint coordination of different collision forces runners during running braking phase. A dynamical system approach was used to analyse the inter-joint coordination parameters. Data were collected with six infra-red cameras and two force plates. According to the impact peak of the vertical ground reaction force, twenty habitually rearfoot-strike runners were categorised into three groups: high collision forces runners (HF group, n = 8), medium collision forces runners (MF group, n = 5), and low collision forces runners (LF group, n = 7). There were no significant differences among the three groups in the ankle and knee joint angle upon landing and in the running velocity (p > 0.05). The HF group produced significantly smaller deviation phase (DP) of the hip flexion/extension-knee flexion/extension during the braking phase compared with the MF and LF groups (p < 0.05). The DP of the hip flexion/extension-knee flexion/extension during the braking phase correlated negatively with the collision force (p < 0.05). The disparities regarding the flexibility of lower extremity inter-joint coordination were found in high collision forces runners. The efforts of the inter-joint coordination and the risk of running injuries need to be clarified further.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号