首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aimed to evaluate the effect of simulated training strategies on performance potential in elite short-track speed skaters. Training load and field-based criterion performances from fifteen athletes (10 males, 5 females) were collected over a 3-month training period and the relationship between training loads and performance was computed with a variable dose-response model using a genetic algorithm. Individual simulations of tapers preceded or not preceded by an overload training (OT) were assessed. We obtained a significant correlation between actual and modelled performances (R2 = 0.76 ± 0.07). Regarding model parameters, no significant difference was found between males and females but the time to recover performance tended to be lower in females. Simulations in which the taper parameters were free highlighted that an exponential or a step taper were the most effective for increasing performance compared to a linear taper (p < 0.05). Optimal exponential taper duration after OT was 10.7 ± 2.4d and the optimal load reduction was 75.9 ± 3.7%. OT intensity had the greatest influence on the predicted performance, followed by OT duration, taper decay, and to a lesser extent load reduction during taper and taper duration. Thus, a variable dose-response systems model allows the evaluation of different taper strategies and their potential effect on performance changes.  相似文献   

2.
The aim of this study was to assess responses to taper in elite athletes using computer simulations. Parameters of a non-linear model were derived from training and performance data over two seasons for eight elite swimmers. The fit between modelled and actual performances was statistically significant for each swimmer (r(2) = 0.56 +/- 0.06; P < 0.01). The simulations were used to estimate characteristics of step and progressive tapers that would maximize performance either (1) after regular training only or (2) after overload training of a 20% step increase in regular training for 28 days. The highest performance with a step taper was greater with than without prior overload training (101.4%, s = 1.6 vs. 101.1%, s = 1.4 of personal record; P < 0.01) but required a longer taper duration (22.4 days, s = 13.4 vs. 16.4 days, s = 10.3; P < 0.05). The optimal progressive taper led to a better performance only after the overload period (101.5%, s = 1.5; P < 0.001). Negative and positive influences of training were estimated as indicators of fatigue and adaptations to training respectively. During the optimal taper, the negative influence was completely removed, independently of the prior training, whereas the positive influence increased only after overload training. Our computer simulations show that the characteristics of an optimal training reduction in elite athletes depend on the training performed in the weeks prior to a taper.  相似文献   

3.
ABSTRACT

Endurance athletes usually achieve performance peaks with 2–4 weeks of overload training followed by 1–3weeks of tapering. With a tight competition schedule, this may not be appropriate. This case investigates the effect of a 7-day overload period including daily high-intensity aerobic training followed by a 5-day step taper between two competitions in an elite cross-country mountain biker. Pre-test peak oxygen consumption was 89 ml·kg?1·min?1, peak aerobic power 6.8 W·kg?1, power output at 2 mmol·L?1 blood lactate concentration 3.9 W·kg?1, maximal isometric force 180 Nm and squat jump 21 cm. During overload, perceived leg well-being went from normal to very heavy. On day 1 after overload, vastus lateralis and vastus medialis EMGmean activity was reduced by 3% and 7%, respectively. Other baseline measurements were reduced by 3–7%. On day 4 of the taper, he felt that his legs were good and all measurements were 3–7% higher than before overload. On day 6 after the taper, his legs felt very good. This case shows that an elite mountain biker (11th in UCI World Cup one week prior to the pre-test) could achieve a rather large supercompensation by using a 12-day performance peaking protocol.  相似文献   

4.
The relationship between external training load and session rating of perceived exertion (s-RPE) training load and the impact that playing experience, playing position and 2-km time-trial performance had on s-RPE training load were explored. From 39 Australian Football players, 6.9 ± 4.6 training sessions were analysed, resulting in 270 samples. Microtechnology devices provided external training load (distance, average speed, high-speed running distance, player load (PL) and player loadslow (PLslow)). The external training load measures had moderate to very large associations (r, 95% CI) with s-RPE training load, average speed (0.45, 0.35–0.54), high-speed running distance (0.51, 0.42–0.59), PLslow (0.80, 0.75–0.84), PL (0.86, 0.83–0.89) and distance (0.88, 0.85–0.90). Differences were described using effect sizes (d ±95% CL). When controlling for external training load, the 4- to 5-year players had higher s-RPE training load than the 0- to 1- (0.44 ± 0.33) and 2- to 3-year players (0.51 ± 0.30), ruckmen had moderately higher s-RPE training load than midfielders (0.82 ± 0.58), and there was a 0.2% increase in s-RPE training load per 1 s increase in time-trial (95% CI: 0.07–0.34). Experience, position and time-trial performance impacted the relationship between external training load and s-RPE training load. This suggests that a given external training load may result in different internal responses between athletes, potentially leaving individuals at risk of overtraining or failing to elicit positive adaptation. It is therefore vital that coaches and trainers give consideration to these mediators of s-RPE training load.  相似文献   

5.
This study compared the functional and neural effects of two strength training programmes differing in set configuration. Thirteen participants performed 10 sessions, over a period of 5 weeks, of unilateral leg extensions with different set configurations but with identical work-to-rest ratios for each limb: a traditional configuration (4 sets of 8 repetitions, 10RM load, 3-min pause between sets) and an inter-repetition rest configuration (32 repetitions, 10RM load, 17.4 s of rest between each repetition). Mean propulsive velocity of the traditional sessions was lower than for inter-repetition rest sessions (0.48 ± 0.06 vs. 0.54 ± 0.06 m · s?1; P < 0.001), while perceived exertion was higher (8.3 ± 0.9 and 6.56 ± 1.6 for traditional training and IRT; P = 0.002). One repetition maximum (RM), work with 10RM load, maximum mean propulsive power, maximum voluntary contraction and time to failure with 50% of maximum isometric force improved similarly in both legs (time effect, P < 0.001; effect size range, 0.451–1.190). Time and set configuration did not show significant main effects or interactions for cortical adaptations (motor-evoked potentials, short-interval intracortical inhibition, intracortical facilitation). There were no significant correlations between changes in cortical and peripheral neural adaptations and strength improvement. In conclusion, inter-repetition rest configuration was as effective as traditional training in improving muscle performance.  相似文献   

6.
Muscle glycogen is the predominant energy source for soccer match play, though its importance for soccer training (where lower loads are observed) is not well known. In an attempt to better inform carbohydrate (CHO) guidelines, we quantified training load in English Premier League soccer players (n = 12) during a one-, two- and three-game week schedule (weekly training frequency was four, four and two, respectively). In a one-game week, training load was progressively reduced (P < 0.05) in 3 days prior to match day (total distance = 5223 ± 406, 3097 ± 149 and 2912 ± 192 m for day 1, 2 and 3, respectively). Whilst daily training load and periodisation was similar in the one- and two-game weeks, total accumulative distance (inclusive of both match and training load) was higher in a two-game week (32.5 ± 4.1 km) versus one-game week (25.9 ± 2 km). In contrast, daily training total distance was lower in the three-game week (2422 ± 251 m) versus the one- and two-game weeks, though accumulative weekly distance was highest in this week (35.5 ± 2.4 km) and more time (P < 0.05) was spent in speed zones >14.4 km · h?1 (14%, 18% and 23% in the one-, two- and three-game weeks, respectively). Considering that high CHO availability improves physical match performance but high CHO availability attenuates molecular pathways regulating training adaptation (especially considering the low daily customary loads reported here, e.g., 3–5 km per day), we suggest daily CHO intake should be periodised according to weekly training and match schedules.  相似文献   

7.
Abstract

Complex training, a combination of resistance training and plyometrics is growing in popularity, despite limited support for its efficacy. In pre- and early pubertal children, the study of complex training has been limited, and to our knowledge an examination of its effect on anaerobic performance characteristics of the upper and lower body has not been undertaken. Furthermore, the effect of detraining after complex training requires clarification. The physical characteristics (mean±s) of the 54 male participants in the present study were as follows: age 12.3 ± 0.3 years, height 1.57 ± 0.07 m, body mass 50.3 ± 11.0 kg. Participants were randomly assigned to an experimental (n = 33) or control group (n = 21). The training, which was performed three times a week for 12 weeks, included a combination of dynamic constant external resistance and plyometrics. After training, participants completed 12 weeks of detraining. At baseline, after training and after detraining, peak and mean anaerobic power, dynamic strength and athletic performance were assessed. Twenty-six participants completed the training and none reported any training-related injury. Complex training was associated with small increases (≤5.5%) in peak and mean power during training, followed by decreases of a similar magnitude (≤ ?5.9%) during detraining (P < 0.05). No changes or minor, progressive increases (≤1.5%) were evident in the control group (P > 0.05). In the experimental group, dynamic strength was increased by 24.3 – 71.4% (dependent on muscle group; P < 0.01), whereas growth-related changes in the control group varied from 0 to 4.4% (P > 0.05). For 40-m sprint running, basketball chest pass and vertical jump test performance, the experimental group saw a small improvement (≤4.0%) after training followed by a decline (≤ ?4.4%) towards baseline during detraining (P < 0.05), whereas the control group experienced no change (P > 0.05). In conclusion, in pre- and early pubertal boys, upper and lower body complex training is a time-effective and safe training modality that confers small improvements in anaerobic power and jumping, throwing and sprinting performance, and marked improvements in dynamic strength. However, after detraining, the benefits of complex training are lost at similar rates to other training modalities.  相似文献   

8.
The impact of perceived wellness on a range of external load parameters, rating of perceived exertion (RPE) and external load:RPE ratios, was explored during skill-based training in Australian footballers. Fifteen training sessions involving 36 participants were analysed. Each morning before any physical training, players completed a customised perceived wellness questionnaire (sleep quality, fatigue, stress, mood and muscle soreness). Microtechnology devices provided external load (average speed, high-speed running distance, player load and player load slow). Players provided RPE using the modified Borg category-ratio 10 RPE scale. Mixed-effect linear models revealed significant effects of wellness Z-score on player load and player load slow. Effects are reported with 95% confidence limits. A wellness Z-score of ?1 corresponded to a ?4.9 ± 3.1 and ?8.6 ± 3.9% reduction in player load and player load slow, respectively, compared to those without reduced wellness. Small significant effects were also seen in the average speed:RPE and player load slow:RPE models. A wellness Z-score of ?1 corresponded to a 0.43 ± 0.38 m·min?1 and ?0.02 ± 0.01 au·min?1 change in the average speed:RPE and player load slow:RPE ratios, respectively. Magnitude-based analysis revealed that the practical size of the effect of a pre-training perceived wellness Z-score of ?1 would have on player load slow was likely negative. The results of this study suggests that monitoring pre-training perceived wellness may provide coaches with information about the intensity of output that can be expected from individual players during a training session.  相似文献   

9.
ABSTRACT

Elite cyclists have often a limited period of time available during their short preparation phase to focus on development of maximal strength; therefore, the purpose of the present study was to investigate the effect of 10-week heavy strength training on lean lower-body mass, leg strength, determinants of cycling performance and cycling performance in elite cyclists. Twelve cyclists performed heavy strength training and normal endurance training (E&S) while 8 other cyclists performed normal endurance training only (E). Following the intervention period E&S had a larger increase in maximal isometric half squat, mean power output during a 30-s Wingate sprint (P < 0.05) and a tendency towards larger improvement in power output at 4 mmol ? L?1 [la?] than E (P = 0.068). There were no significant difference between E&S and E in changes in 40-min all-out trial (4 ± 6% vs. ?1 ± 6%, respectively, P = 0.13). These beneficial effects may encourage elite cyclists to perform heavy strength training and the short period of only 10 weeks should make it executable even in the compressed training and competition schedule of elite cyclists.  相似文献   

10.
The aim of the present study was to analyse the training load in wheelchair basketball small-sided games and determine the relationship between heart rate (HR)-based training load and perceived exertion (RPE)-based training load methods among small-sided games bouts. HR-based measurements of training load included Edwards’ training load and Stagno’s training impulses (TRIMPMOD) while RPE-based training load measurements included cardiopulmonary (session RPEres) and muscular (session RPEmus) values. Data were collected from 12 wheelchair basketball players during five consecutive weeks. The total load for the small-sided games sessions was 67.5 ± 6.7 and 55.3 ± 12.5 AU in HR-based training load (Edwards’ training load and TRIMPMOD), while the RPE-based training loads were 99.3 ± 26.9 (session RPEres) and 100.8 ± 31.2 AU (session RPEmus). Bout-to-bout analysis identified greater session RPEmus in the third [P < 0.05; effect size (ES) = 0.66, moderate] and fourth bouts (P < 0.05; ES = 0.64, moderate) than in the first bout, but other measures did not differ. Mean correlations indicated a trivial and small relationship among HR-based and RPE-based training loads. It is suggested that HR-based and RPE-based training loads provide different information, but these two methods could be complementary because one method could help us to understand the limitations of the other.  相似文献   

11.
ABSTRACT

This study investigated changes in body composition in relation to training load determined using RPE and duration (sRPE), and its relationship with physical qualities over a preseason period. Sixteen professional academy players (age = 17.2 ± 0.7 years; stature = 179.9 ± 4.9 cm; body mass = 88.5 ± 10.1 kg) participated in the study. Body composition was assessed before and after each training phase and physical qualities assessed at the start and end of preseason. Across the whole preseason period, skinfold thickness, body fat percentage and fat mass were most likely lower (ES = ?0.73 to ?1.00), and fat free mass and lean mass were likely to most likely higher (ES = 0.31 to 0.40). Results indicated that the magnitude of change appeared phase-dependent (ES = ?0.05 to ?0.85) and demonstrated large individual variability. Changes in physical qualities ranged from unclear to most likely (ES = ?0.50 to 0.64). Small to moderate correlations were observed between changes in body composition, and TL with changes in physical qualities. This study suggests training phase and TL can influence a player’s body composition; that large inter-participant variability exists; and that body composition and TL are related to the change in physical qualities.  相似文献   

12.
Ballistic limb motion is enabled by proximal “core” stiffness. However, controversy exists regarding the best method of training this characteristic. This study sought to determine the most effective core training method to enhance distal limb athleticism. A total of 12 participants (24 ± 3 years, 1.8 ± 0.05 m, 76.8 ± 9.7 kg) consisting of Muay Thai athletes performed a core training protocol (Isometric vs. Dynamic, with Control) for 6 weeks, using a repeated measures design to assess performance (peak strike velocity, peak impact force, muscular activation) in various strikes. Isometric training increased impact force in Jab (554.4 ± 70.1 N), Cross (1895.2 ± 203.1 N), Combo (616.8 ± 54.9 N), and Knee (1240.0 ± 89.1 N) trials (P < 0.05). Dynamic training increased strike velocity in Jab (1.3 ± 0.2 m · s?1), Cross (5.5 ± 0.9 m · s?1), Combo (0.7 ± 0.1, 2.8 ± 0.3 m · s?1), and Knee (3.2 ± 0.3 m · s?1) trials (P < 0.05). Isometric training increased Combo impact force 935.1 ± 100.3 N greater than Dynamic and 931.6 ± 108.5 N more than Control (P < 0.05). Dynamic training increased Jab strike velocity 1.3 ± 0.1 m · s?1 greater than Isometric and 0.8 ± 0.1 m · s?1 more than Control (P < 0.05). It appears that both static and dynamic approaches to core training are needed to enhance both velocity and force in distal limbs.  相似文献   

13.
In a randomised controlled trial design, effects of 6 weeks of plyometric training on maximal-intensity exercise and endurance performance were compared in male and female soccer players. Young (age 21.1 ± 2.7 years) players with similar training load and competitive background were assigned to training (women, n = 19; men, n = 21) and control (women, n = 19; men, n = 21) groups. Players were evaluated for lower- and upper-body maximal-intensity exercise, 30 m sprint, change of direction speed and endurance performance before and after 6 weeks of training. After intervention, the control groups did not change, whereas both training groups improved jumps (effect size (ES) = 0.35–1.76), throwing (ES = 0.62–0.78), sprint (ES = 0.86–1.44), change of direction speed (ES = 0.46–0.85) and endurance performance (ES = 0.42–0.62). There were no differences in performance improvements between the plyometric training groups. Both plyometric groups improved more in all performance tests than the controls. The results suggest that adaptations to plyometric training do not differ between men and women.  相似文献   

14.
ABSTRACT

This study investigated the effects of a 4-week training with hand paddles (HPD) on front-crawl swimming performance (SP), clean swimming speed (SPEED), stroke rate (SR), stroke length (SL) and tethered force (TF). Twenty swimmers (10 men and 10 women) were paired according to performance and gender, and were randomly assigned to control (CON, 22.4 ± 2.3 years) or HPD (21.8 ± 1.9 years) groups. During 4 weeks both groups performed the same training, except for a sprint training set (3 times/week, 10 × 10 strokes all-out, 1-min rest) completed with (HPD = 320 cm2) and without (CON) paddles. Afterwards, both groups performed the same training over a 2-week taper period. SP, SPEED, SR, SL and TF were assessed before (PRE) and after the 4-week period (POST), after the first (T1) and second taper weeks (T2). Swimmers rated their perceived exertion for the sprint training set (RPETS) and the training session for determining internal training load (ITL). SP, SPEED, SR, SL and TF did not change from PRE to POST, T1 and T2. ITL and RPETS were not different between groups. Training 4 weeks with HPD does not affect swimming performance, so the use of HPD remains unsupported in such period.  相似文献   

15.
Abstract

The aim of the present study was to investigate the effect of training at an intensity eliciting 90% of maximal sprinting speed on maximal and repeated-sprint performance in soccer. It was hypothesised that sprint training at 90% of maximal velocity would improve soccer-related sprinting. Twenty-two junior club-level male and female soccer players (age 17 ± 1 year, body mass 64 ± 8 kg, body height 174 ± 8 cm) completed an intervention study where the training group (TG) replaced one of their weekly soccer training sessions with a repeated-sprint training session performed at 90% of maximal sprint speed, while the control group (CG) completed regular soccer training according to their teams’ original training plans. Countermovement jump, 12 × 20-m repeated-sprint, VO2max and the Yo-Yo Intermittent Recovery Level 1 test were performed prior to and after a 9-week intervention period. No significant between-group differences were observed for any of the performance indices and effect magnitudes were trivial or small. Before rejecting the hypothesis, we recommend that future studies should perform intervention programmes with either stronger stimulus or at other times during the season where total training load is reduced.  相似文献   

16.
This study examined the utility of a range of approaches used to develop player-dependent speed zones in time-motion analysis (TMA), in determining the dose-response (internal load) of daily football training. Daily external (10 Hz GPS) and internal load (heart rate metrics, ratings of perceived exertion [RPE], wellness ratings) measures were tracked for 22 International women’s football players during a 21-day training camp. High-speed (HSR) and very high speed running (VHSR) were determined according to arbitrary speed thresholds, as well as using a range of different individualization approaches that included the velocities corresponding to the heart rate deflection point, maximal aerobic speed, YYIR1 performance, and maximal sprint speed (MSS). Within-player correlations between the TMA approaches versus internal load measures quantified the dose-response to training. Correlations between HSR and VHSR vs. RPE were large (r = 0.53–0.67), with the exception of VHSR for the MSS technique (moderate; r = 0.44). HSR was very-largely associated with heart rate indices (r = 0.72–0.78), again with the exception of MSS (large; r = 0.60–0.67). Using a range of different fitness characteristics to individualise speed thresholds did not enhance the dose-response determination to daily fluctuations in external load, and was worsened with MSS per se.  相似文献   

17.
Task-specific auditory training can improve sensorimotor processing times of the auditory reaction time (RT). The majority of competitive swimmers do not conduct habitual start training with the electronic horn used to commence a race. We examined the effect of four week dive training interventions on RT and block time (BT) of 10 male adolescent swimmers (age 14.0 ± 1.4 years): dive training with auditory components (speaker and electronic horn) (n = 5) and dive training without auditory components (n = 5). Auditory stimulus dive training significantly reduced swimming start RT, compared with dive training without auditory components (p < 0.01), with a group mean RT reduction of 13 ± 9 ms. Four of the five swimmers that received auditory stimulus training showed medium to large effect size reductions in RT (d = 0.74; 1.32; 1.40; 1.81). No significant changes to swimmers’ BTs were evident in either dive training intervention. The adolescent swimmers’ results were compared against six male elite swimmers (age 19.8 ± 1.0 years). The elite swimmers had significantly shorter BTs (p < 0.05) but no significant difference in RTs. Auditory stimulus dive training should be explored further as a mechanism for improving swimming start performance in elite swimmers who have pre-established optimal BTs.  相似文献   

18.
Abstract

The purpose of this study was to develop statistical models that estimate the influence of training load on training injury and physical fitness in collision sport athletes. The incidence of training injuries was studied in 183 rugby league players over two competitive seasons. Participants were assessed for height, body mass, skinfold thickness, vertical jump, 10-m, 20-m and 40-m sprint time, agility, and estimated maximal aerobic power in the off-season, pre-season, mid-season, and end-season. Training load and injury data were summarised into pre-season, early-competition, and late-competition training phases. Individual training load, fitness, and injury data were modelled using a logistic regression model with a binomial distribution and logit link function, while team training load and injury data were modelled using a linear regression model. While physical fitness improved with training, there was no association (P = 0.16 – 0.99) between training load and changes in physical fitness during any of the training phases. However, increases in training load during the early-competition training phase decreased (P = 0.04) agility performance. A relationship (P = 0.01 – 0.04) was observed between the log of training load and odds of injury during each training phase, resulting in a 1.50 – 2.85 increase in the odds of injury for each arbitrary unit increase in training load. Furthermore, during the pre-season training phase there was a relationship (P = 0.01) between training load and injury incidence within the training load range of 155 and 590 arbitrary units. During the early and late-competition training phases, increases in training load of 175 – 620 arbitrary units and 145 – 410 arbitrary units, respectively, resulted in no further increase in injury incidence. These findings demonstrate that increases in training load, particularly during the pre-season training phase, increase the odds of injury in collision sport athletes. However, while increases in training load from 175 to 620 arbitrary units during the early-competition training phase result in no further increase in injury incidence, marked reductions in agility performances can occur. These findings suggest that reductions in training load during the early-competition training phase can reduce the odds of injury without compromising agility performances in collision sport athletes.  相似文献   

19.
ABSTRACT

This study aimed to evaluate whether an individualised sprint-training program was more effective in improving sprint performance in elite team-sport players compared to a generalised sprint-training program. Seventeen elite female handball players (23 ± 3 y, 177 ± 7 cm, 73 ± 6 kg) performed two weekly sprint training sessions over eight weeks in addition to their regular handball practice. An individualised training group (ITG, n = 9) performed a targeted sprint-training program based on their horizontal force-velocity profile from the pre-training test. Within ITG, players displaying the lowest, highest and mid-level force-velocity slope values relative to body mass were assigned to a resisted, an assisted or a mixed sprint-training program (resisted sprinting in the first half and assisted sprinting in the second half of the intervention period), respectively. A control group (CG, n = 8) performed a generalised sprint-training program. Both groups improved 30-m sprint performance by ~1% (small effect) and maximal velocity sprinting by ~2% (moderate effect). Trivial or small effect magnitudes were observed for mechanical outputs related to horizontal force- or power production. All between-group differences were trivial. In conclusion, individualised sprint-training was no more effective in improving sprint performance than a generalised sprint-training program.  相似文献   

20.
Abstract

The aim of this study was to quantify the physiological loads of programmed “pre-season” and “in-season” training in professional soccer players. Data for players during each period were included for analysis (pre-season, n = 12; in-season, n = 10). We monitored physiological loading of training by measuring heart rate and rating of perceived exertion (RPE). Training loads were calculated by multiplying RPE score by the duration of training sessions. Each session was sub-categorized as physical, technical/tactical, physical and technical/tactical training. Average physiological loads in pre-season (heart rate 124 ± 7 beats · min?1; training load 4343 ± 329 Borg scale · min) were higher compared with in-season (heart rate 112 ± 7 beats · min?1; training load 1703 ± 173 Borg scale · min) (P < 0.05) and there was a greater proportion of time spent in 80–100% maximum heart rate zones (18 ± 2 vs. 5 ± 2%; P < 0.05). Such differences appear attributable to the higher intensities in technical/tactical sessions during pre-season (pre-season: heart rate 137 ± 8 beats · min?1; training load 321 ± 23 Borg scale · min; in-season: heart rate 114 ± 9 beats · min?1; training load 174 ± 27 Borg scale · min; P < 0.05). These findings demonstrate that pre-season training is more intense than in-season training. Such data indicate that these adjustments in load are a direct attempt to deliver training to promote specific training adaptations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号