首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Abstract

The aim of the study is the modelling of training responses with a variable dose-response model in a sport discipline that requires highly complex coordination. We propose a method to optimise the training programme plan using the potential maximal performance gain associated with overload and tapering periods. Data from five female elite gymnasts were collected over a 3-month training period. The relationship between training amounts and performance was then assessed with a non-linear model. The optimal magnitude of training load reduction and its duration were investigated with and without an overload period using simulation procedures based on individual responses to training. The correlation between actual and modelled performances was significant (R 2 = 0.81 ± 0.02, P < 0.01). The standard error was 2.7%. Simulations revealed that taper preceded by an overload period allows a higher performance to be achieved compared to an absence of overload period (106.3 ± 0.3% vs. 105.1 ± 0.3%). With respect to the pre-taper load, the model predicts that optimal load reductions during taper were 48.4 ± 0.7% and 42.5 ± 1.0% for overloading and non-overloading strategies, respectively. Moreover, optimal durations of the taper period were 34 ± 0.5 days and 22 ± 0.5 days for overloading and non-overloading strategies, respectively. In conclusion, the study showed that the variable dose-response model describes precisely the training response in gymnasts.  相似文献   

2.
The aim of this study was to examine the performance characteristics of male and female finalists in the 100-m distance at the 2016 European Championships in swimming (long-course-metre). The performances of all 64 (32-males and 32-females) were analysed (8 swimmers per event; Freestyle, Backstroke, Breaststroke and Butterfly). A set of start and turn parameters were analysed. In the start main outcome, male swimmers were faster in Butterfly (5.71 ± 0.14s) and females in Freestyle (6.68 ± 0.28s). In the turn main outcome, male and female swimmers were faster in Freestyle (males: 9.55 ± 0.13s; females: 10.78 ± 0.28s). A significant and strong stroke effect was noted in the start and turn main outcome, in both sexes. In the start plus the turn combined, males and females were faster in Freestyle (males: 15.40 ± 0.20s; females: 17.45 ± 0.54s). The start and the turn combined accounted almost one-third of the total race time in all events, and non-significant differences (p > 0.05) were noted across the four swim strokes. Once this research made evident the high relevance of start and turns, it is suggested that coaches and swimmers should dedicate an expressive portion of the training perfecting these actions.  相似文献   

3.
ABSTRACT

This study aimed to investigate between- and within-team changes in workload [PlayerLoad (PL), training impulse (TRIMP) and session rate of perceived exertion training load (sRPE-TL)], readiness [heart rate variability (HRV)], and physical performance [20-m sprint test (including 10-m split time), countermovement jump (CMJ) and yo-yo intermittent recovery test level 1 (YYIR1)] during 3-week intensified preparation periods in female, national Under18 (n = 12, age = 18.0 ± 0.5y, stature = 180.4 ± 7.5 cm, body mass = 72.7 ± 9.3 kg) and Under20 (n = 12, age = 19.6 ± 0.8y, stature = 178.6 ± 6.4 cm, body mass = 68.0 ± 5.9 kg) basketball teams. Under18 team revealed small-to-moderate statistically significantly higher values in workload [PL: p = 0.010; ES = Small; TRIMP: p = 0.004; ES = Moderate; sRPE-TL: p < 0.001; ES = Moderate] and moderately lower readiness values (p = 0.023; ES = Moderate) compared to Under20. Within-team analysis showed no differences in workload in Under20 and statistically significant reduction (p < 0.05) in Week3 (taper period) in Under18. Pre- and post-preparation changes showed Under18 increasing only YYIR1 performance (p < 0.001; ES = Very large). Differently, Under20 statistically improved in 10-m split time (p = 0.003; ES = Moderate), CMJ (p = 0.025; ES = Moderate) and YYIR1 (p < 0.001; ES = Large). A constant adequate workload positively benefits players’ readiness and physical performances during short intensified preparation periods. Conversely, using high workload with periodization strategies encompassing short overload and taper phases induced positive changes on players’ aerobic performance, lower readiness values and no changes in anaerobic performances.  相似文献   

4.
Abstract

The purpose of this study was to characterize changes and variability in test performance of swimmers within and between seasons over their elite competitive career. Forty elite swimmers (24 male, 16 female) performed a 7×200-m incremental swimming step test several times each 6-month season (10±5 tests, spanning 0.5–6.0?y). Mixed linear modeling provided estimates of percent change in the mean and individual responses (within-athlete variation as a coefficient of variation) for measures based on submaximal performance (fixed 4-mM lactate), maximal performance (the seventh step) and lean mass (from skinfolds and body mass). Submaximal and maximal swim speed increased within each season from pre to taper phase by ~2.2% for females and ~1.5% for males (95% confidence limits ±1.0%), with variable contributions from stroke rate and stroke length. Most of the gains in speed were lost in the off-season, leaving a net average annual improvement of ~1.0% for females and ~0.6% for males (±1.0%). For submaximal and maximal speed, individual variation between phases was ±2.2% and the typical measurement error was ±0.80%. Step test and anthropometric measures can be used to confidently monitor progressions in swimmers in an elite training program within and between seasons.  相似文献   

5.
System theory is classically applied to describe and to predict the effects of training load on performance. The classic models are structured by impulse-type transfer functions, nevertheless, most biological adaptations display exponential growth kinetics. The aim of this study was to propose an extension of the model structure taking into account the exponential nature of skeletal muscle adaptations by using a genetic algorithm. Thus, the conventional impulse-type model was applied in 15 resistance trained rodents and compared with exponential growth-type models. Even if we obtained a significant correlation between actual and modelled performances for all the models, our data indicated that an exponential model is associated with more suitable parameters values, especially the time constants that correspond to the positive response to training. Moreover, positive adaptations predicted with an exponential component showed a strong correlation with the main structural adaptations examined in skeletal muscles, i.e. hypertrophy (R2 = 0.87, 0.96 and 0.99, for type 1, 2A and 2X cross-sectional area fibers, respectively) and changes in fiber-type composition (R2 = 0.81 and 0.79, for type 1 and 2A fibers, respectively). Thus, an exponential model succeeds to describe both performance variations with relevant time constants and physiological adaptations that take place during resistance training.  相似文献   

6.
Abstract

The aim of this study was to compare optimization and correction procedures for the determination of peak power output during friction-loaded cycle ergometry. Ten male and 10 female sports students each performed five 10-s sprints from a stationary start on a Monark 864 basket-loaded ergometer. Resistive loads of 5.0, 6.5, 8.0, 9.5, and 11.0% body weight were administered in a counterbalanced order, with a recovery period of 10 min between sprints. Peak power was greater and occurred earlier, with less work having been done before the attainment of peak power, when the data were corrected to account for the inertial and frictional characteristics of the ergometer. Corrected peak power was independent of resistive load (P > 0.05), whereas uncorrected peak power varied as a quadratic function of load (P < 0.001). For males and females, optimized peak power (971 ± 122 and 668 ± 37 W) was lower (P < 0.01) than either the highest (1074 ± 111 and 754 ± 56 W respectively) or the mean (1007 ± 125 and 701 ± 45 W respectively) of the five values for corrected peak power. Optimized and mean corrected peak power were highly correlated both in males (r = 0.97, P < 0.001) and females (r = 0.96, P < 0.001). The difference between optimized and mean corrected peak power was 37 ± 30 W in males and 33 ± 14 W in females, of which approximately 15 W was due to the correction for frictional losses. We conclude that corrected peak power is independent of resistive load in males and females.  相似文献   

7.
ABSTRACT

This study aimed to examine: (i) the effect of decreasing training load (TL) during taper weeks on physical match activities in professional soccer players, and (ii) to disclose the relationship between weekly TL and physical match activities. Rating of perceived exertion was collected after each training session and match to quantify the TL in 19 professional players over 17 standard and 7 taper weeks during the season. Physical match activities were quantified by a computerised match analysis system and compared between standard training and taper weeks. Compared to standard weeks, the duration and frequency of training sessions during the taper weeks decreased (?21.7% and ?18.8%, respectively; < 0.01) with no change in intensity (?4.8%; = 0.09). Consequently, the weekly TL decreased during the taper weeks (?25.5%; < 0.01). Increases in distance covered by intense running (+15.1%; < 0.05), high-intensity running (HIR) (+15.7%; < 0.01), number of sprints (+17.8%; < 0.05) and number of high-speed runs (+15.7%; < 0.05) were observed during the seven matches played after the taper weeks. High relationships were observed between TL and HIR distance covered, number of HIR and number of sprints (r = ?0.53; r = ?0.55; r = ?0.65, respectively; < 0.01). Decreasing TL during taper weeks by reducing training duration and frequency but maintaining intensity was associated with an increase in physical activities during matches. However, it needs to be determined whether tapering or other match factors led to the changes in match activity.  相似文献   

8.
The relationship between external training load and session rating of perceived exertion (s-RPE) training load and the impact that playing experience, playing position and 2-km time-trial performance had on s-RPE training load were explored. From 39 Australian Football players, 6.9 ± 4.6 training sessions were analysed, resulting in 270 samples. Microtechnology devices provided external training load (distance, average speed, high-speed running distance, player load (PL) and player loadslow (PLslow)). The external training load measures had moderate to very large associations (r, 95% CI) with s-RPE training load, average speed (0.45, 0.35–0.54), high-speed running distance (0.51, 0.42–0.59), PLslow (0.80, 0.75–0.84), PL (0.86, 0.83–0.89) and distance (0.88, 0.85–0.90). Differences were described using effect sizes (d ±95% CL). When controlling for external training load, the 4- to 5-year players had higher s-RPE training load than the 0- to 1- (0.44 ± 0.33) and 2- to 3-year players (0.51 ± 0.30), ruckmen had moderately higher s-RPE training load than midfielders (0.82 ± 0.58), and there was a 0.2% increase in s-RPE training load per 1 s increase in time-trial (95% CI: 0.07–0.34). Experience, position and time-trial performance impacted the relationship between external training load and s-RPE training load. This suggests that a given external training load may result in different internal responses between athletes, potentially leaving individuals at risk of overtraining or failing to elicit positive adaptation. It is therefore vital that coaches and trainers give consideration to these mediators of s-RPE training load.  相似文献   

9.
Abstract

The purpose of this study was to develop statistical models that estimate the influence of training load on training injury and physical fitness in collision sport athletes. The incidence of training injuries was studied in 183 rugby league players over two competitive seasons. Participants were assessed for height, body mass, skinfold thickness, vertical jump, 10-m, 20-m and 40-m sprint time, agility, and estimated maximal aerobic power in the off-season, pre-season, mid-season, and end-season. Training load and injury data were summarised into pre-season, early-competition, and late-competition training phases. Individual training load, fitness, and injury data were modelled using a logistic regression model with a binomial distribution and logit link function, while team training load and injury data were modelled using a linear regression model. While physical fitness improved with training, there was no association (P = 0.16 – 0.99) between training load and changes in physical fitness during any of the training phases. However, increases in training load during the early-competition training phase decreased (P = 0.04) agility performance. A relationship (P = 0.01 – 0.04) was observed between the log of training load and odds of injury during each training phase, resulting in a 1.50 – 2.85 increase in the odds of injury for each arbitrary unit increase in training load. Furthermore, during the pre-season training phase there was a relationship (P = 0.01) between training load and injury incidence within the training load range of 155 and 590 arbitrary units. During the early and late-competition training phases, increases in training load of 175 – 620 arbitrary units and 145 – 410 arbitrary units, respectively, resulted in no further increase in injury incidence. These findings demonstrate that increases in training load, particularly during the pre-season training phase, increase the odds of injury in collision sport athletes. However, while increases in training load from 175 to 620 arbitrary units during the early-competition training phase result in no further increase in injury incidence, marked reductions in agility performances can occur. These findings suggest that reductions in training load during the early-competition training phase can reduce the odds of injury without compromising agility performances in collision sport athletes.  相似文献   

10.
This study examined the utility of a range of approaches used to develop player-dependent speed zones in time-motion analysis (TMA), in determining the dose-response (internal load) of daily football training. Daily external (10 Hz GPS) and internal load (heart rate metrics, ratings of perceived exertion [RPE], wellness ratings) measures were tracked for 22 International women’s football players during a 21-day training camp. High-speed (HSR) and very high speed running (VHSR) were determined according to arbitrary speed thresholds, as well as using a range of different individualization approaches that included the velocities corresponding to the heart rate deflection point, maximal aerobic speed, YYIR1 performance, and maximal sprint speed (MSS). Within-player correlations between the TMA approaches versus internal load measures quantified the dose-response to training. Correlations between HSR and VHSR vs. RPE were large (r = 0.53–0.67), with the exception of VHSR for the MSS technique (moderate; r = 0.44). HSR was very-largely associated with heart rate indices (r = 0.72–0.78), again with the exception of MSS (large; r = 0.60–0.67). Using a range of different fitness characteristics to individualise speed thresholds did not enhance the dose-response determination to daily fluctuations in external load, and was worsened with MSS per se.  相似文献   

11.
This study determined whether backward grinding performance in America's Cup sailing could be improved using a training intervention to increase power capability in the upper-body pull movement. Fourteen elite male sailors (34.9 ± 5.9 years; 98.1 ± 14.4 kg; 186.6 ± 7.7 cm) were allocated into experimental (speed-focussed) and control groups. Grinding performance was assessed using a grinding ergometer and an instrumented Smith machine measured force, velocity and power during the bench pull exercise. Conventional training produced significant improvements in bench pull 1 RM (5.2 ± 4.0%; p = 0.016) and maximum force production (5.4 ± 4.0%; p = 0.014). Speed-focussed training improved maximum power (7.8 ± 4.9%; p = 0.009), power at 1RM (10.3 ± 8.9%; p = 0.019) and maximum velocity (8.4 ± 2.6%; p = 0.0002). Backward grinding performance showed greater improvements in the experimental group than the control group for moderate (+1.8%) and heavy load (+6.0%) grinding. Changes in maximum power output and power at 1 RM had large correlations (r = 0.56–0.61) with changes in both moderate and heavy load grinding performance. Time to peak force had the strongest relationship, explaining 70% of the change in heavy load grinding performance. Although the performance benefit was not entirely clear the likelihood of a detrimental effect was low ( < 5%) and therefore implementation could be recommended.  相似文献   

12.
Abstract

The aim of this study was to quantify the physiological loads of programmed “pre-season” and “in-season” training in professional soccer players. Data for players during each period were included for analysis (pre-season, n = 12; in-season, n = 10). We monitored physiological loading of training by measuring heart rate and rating of perceived exertion (RPE). Training loads were calculated by multiplying RPE score by the duration of training sessions. Each session was sub-categorized as physical, technical/tactical, physical and technical/tactical training. Average physiological loads in pre-season (heart rate 124 ± 7 beats · min?1; training load 4343 ± 329 Borg scale · min) were higher compared with in-season (heart rate 112 ± 7 beats · min?1; training load 1703 ± 173 Borg scale · min) (P < 0.05) and there was a greater proportion of time spent in 80–100% maximum heart rate zones (18 ± 2 vs. 5 ± 2%; P < 0.05). Such differences appear attributable to the higher intensities in technical/tactical sessions during pre-season (pre-season: heart rate 137 ± 8 beats · min?1; training load 321 ± 23 Borg scale · min; in-season: heart rate 114 ± 9 beats · min?1; training load 174 ± 27 Borg scale · min; P < 0.05). These findings demonstrate that pre-season training is more intense than in-season training. Such data indicate that these adjustments in load are a direct attempt to deliver training to promote specific training adaptations.  相似文献   

13.
Abstract

In the present study, we examined the independent and combined effects of an inspiratory muscle warm-up and inspiratory muscle training on intermittent running to exhaustion. Twelve males were recruited to undertake four experimental trials. Two trials (Trials 1 and 2) preceded either a 4-week training period of 1 × 30 breaths twice daily at 50% (experimental group) or 15% (control group) maximal inspiratory mouth pressure (PImax). A further two trials (Trials 3 and 4) were performed after the 4 weeks. Trials 2 and 4 were preceded by a warm-up: 2 × 30 breaths at 40% PImax. Pre-training PImax and distance covered increased (P < 0.05) similarly between groups after the warm-up (~11% and ~5–7% PImax and distance covered, respectively). After training, PImax increased by 20 ± 6.1% (P < 0.01; d = 3.6) and 26.7 ± 6.3% (P < 0.01; d = 3.1) when training and warm-up were combined in the experimental group. Distance covered increased after training in the experimental group by 12 ± 4.9% (P < 0.01; d = 3.6) and 14.9 ± 4.5% (P < 0.01; d = 2.3) when training and warm-up interventions were combined. In conclusion, inspiratory muscle training and inspiratory muscle warm-up can both increase running distance independently, but the greatest increase is observed when they are combined.  相似文献   

14.
The aim of this study was to assess responses to taper in elite athletes using computer simulations. Parameters of a non-linear model were derived from training and performance data over two seasons for eight elite swimmers. The fit between modelled and actual performances was statistically significant for each swimmer (r(2) = 0.56 +/- 0.06; P < 0.01). The simulations were used to estimate characteristics of step and progressive tapers that would maximize performance either (1) after regular training only or (2) after overload training of a 20% step increase in regular training for 28 days. The highest performance with a step taper was greater with than without prior overload training (101.4%, s = 1.6 vs. 101.1%, s = 1.4 of personal record; P < 0.01) but required a longer taper duration (22.4 days, s = 13.4 vs. 16.4 days, s = 10.3; P < 0.05). The optimal progressive taper led to a better performance only after the overload period (101.5%, s = 1.5; P < 0.001). Negative and positive influences of training were estimated as indicators of fatigue and adaptations to training respectively. During the optimal taper, the negative influence was completely removed, independently of the prior training, whereas the positive influence increased only after overload training. Our computer simulations show that the characteristics of an optimal training reduction in elite athletes depend on the training performed in the weeks prior to a taper.  相似文献   

15.
The aims of this study were to describe muscular activation patterns and kinematic variables during the complete stroke cycle (SC) and the different phases of breaststroke swimming at submaximal and maximal efforts. Surface electromyography (sEMG) was collected from eight muscles in nine elite swimmers; five females (age 20.3 ± 5.4 years; Fédération Internationale de Natation [FINA] points 815 ± 160) and four males (27.7 ± 7.1 years; FINA points 879 ± 151). Underwater cameras were used for 3D kinematic analysis with automatic motion tracking. The participants swam 25 m of breaststroke at 60%, 80% and 100% effort and each SC was divided into three phases: knee extension, knee extended and knee flexion. With increasing effort, the swimmers decreased their SC distance and increased their velocity and stroke rate. A decrease during the different phases was found for duration during knee extended and knee flexion, distance during knee extended and knee angle at the beginning of knee extension with increasing effort. Velocity increased for all phases. The mean activation pattern remained similar across the different effort levels, but the muscles showed longer activation periods relative to the SC and increased integrated sEMG (except trapezius) with increasing effort. The muscle activation patterns, muscular participation and kinematics assessed in this study with elite breaststroke swimmers contribute to a better understanding of the stroke and what occurs at different effort levels. This could be used as a reference for optimising breaststroke training to improve performance.  相似文献   

16.
Abstract

Spinning is a type of indoor fitness activity performed on stationary bikes by participants who pedal together to the rhythm of music and the motivating words of an instructor. Despite worldwide popularity of this type of recreational activity, to date there have been few, mainly non-scientific, studies of the impact of spinning on metabolic, respiratory, and cardiovascular functions. The main aim of this study was to evaluate a number of metabolic and cardiovascular variables during a standard 50-min class performed by Spinning® instructors of both sexes: six males (age 30 ± 4.8 years, body mass index 24 ± 2.5 kg · m?2; mean ± s) and six females (age 34 ± 6.3 years, body mass index 21 ± 1.9 kg · m?2). The mean power output, heart rate, and oxygen uptake during the performance were 120 ± 4 W, 136 ± 13 beats · min?1, and 32.8 ± 5.4 ml · kg?1 · min?1 respectively for males, and 73 ± 43 W, 143 ± 25 beats · min?1, and 30 ± 9.9 ml · kg?1 · min?1 respectively for females. Analysis of individual performances showed that they were compatible with physical exercise that ranged from moderate-to-heavy to very heavy, the latter conditions prevailing. The results show that this type of fitness activity has a high impact on cardiovascular function and suggest that it is not suitable for unfit or sedentary individuals, especially the middle aged or elderly, who are willing to begin a recreational physical activity programme.  相似文献   

17.
The aim of the present study was to analyse the training load in wheelchair basketball small-sided games and determine the relationship between heart rate (HR)-based training load and perceived exertion (RPE)-based training load methods among small-sided games bouts. HR-based measurements of training load included Edwards’ training load and Stagno’s training impulses (TRIMPMOD) while RPE-based training load measurements included cardiopulmonary (session RPEres) and muscular (session RPEmus) values. Data were collected from 12 wheelchair basketball players during five consecutive weeks. The total load for the small-sided games sessions was 67.5 ± 6.7 and 55.3 ± 12.5 AU in HR-based training load (Edwards’ training load and TRIMPMOD), while the RPE-based training loads were 99.3 ± 26.9 (session RPEres) and 100.8 ± 31.2 AU (session RPEmus). Bout-to-bout analysis identified greater session RPEmus in the third [P < 0.05; effect size (ES) = 0.66, moderate] and fourth bouts (P < 0.05; ES = 0.64, moderate) than in the first bout, but other measures did not differ. Mean correlations indicated a trivial and small relationship among HR-based and RPE-based training loads. It is suggested that HR-based and RPE-based training loads provide different information, but these two methods could be complementary because one method could help us to understand the limitations of the other.  相似文献   

18.
Muscle glycogen is the predominant energy source for soccer match play, though its importance for soccer training (where lower loads are observed) is not well known. In an attempt to better inform carbohydrate (CHO) guidelines, we quantified training load in English Premier League soccer players (n = 12) during a one-, two- and three-game week schedule (weekly training frequency was four, four and two, respectively). In a one-game week, training load was progressively reduced (P < 0.05) in 3 days prior to match day (total distance = 5223 ± 406, 3097 ± 149 and 2912 ± 192 m for day 1, 2 and 3, respectively). Whilst daily training load and periodisation was similar in the one- and two-game weeks, total accumulative distance (inclusive of both match and training load) was higher in a two-game week (32.5 ± 4.1 km) versus one-game week (25.9 ± 2 km). In contrast, daily training total distance was lower in the three-game week (2422 ± 251 m) versus the one- and two-game weeks, though accumulative weekly distance was highest in this week (35.5 ± 2.4 km) and more time (P < 0.05) was spent in speed zones >14.4 km · h?1 (14%, 18% and 23% in the one-, two- and three-game weeks, respectively). Considering that high CHO availability improves physical match performance but high CHO availability attenuates molecular pathways regulating training adaptation (especially considering the low daily customary loads reported here, e.g., 3–5 km per day), we suggest daily CHO intake should be periodised according to weekly training and match schedules.  相似文献   

19.
Our purpose was to use group and single-case methods to examine inter-individual variability in the context of factors related to landing injuries. We tested the load accommodation strategies model (An exploration of load accommodation strategies during walking with extremity-carried weights. Human Movement Science, 35, 17–29) using landing impulse, revealing pre-landing strategies following height and external load manipulations. Ten healthy volunteers (8 male, 2 female, 24.0 ± 1.4 years, 1.72 ± 0.06 m, 73.5 ± 8.7 kg) were analysed across 12 trials in each of three load conditions (100% body weight [BW], 110% BW, 120% BW) from two landing heights (30 cm, 60 cm). Landing impulse (BW ? s) was computed for each participant-condition-trial, using impulse ratios (unit-less; BW ? s/BW ? s) to evaluate load accommodation strategies between adjacent load conditions (110%/100%, 120%/110%) at each landing height. Load accommodation strategy classifications were based on 95% confidence intervals (CIs) containing mechanically predicted impulse ratios (1.10 and 1.09 for 110/100% BW and 120/110% BW, respectively; α = 0.05). Mean group impulse ratios matched and exceeded predicted impulse ratios. Single-case analyses revealed a range of individual landing strategies that might be overlooked during group analyses, possibly uncovering individuals at greater risk of injury during landing activities.  相似文献   

20.
The aims of the study were to describe the physiological profile of a 65-km (4000-m cumulative elevation gain) running mountain ultra-marathon (MUM) and to identify predictors of MUM performance. Twenty-three amateur trail-runners performed anthropometric evaluations and an uphill graded exercise test (GXT) for VO2max, ventilatory thresholds (VTs), power outputs (PMax, PVTs) and heart rate response (HRmax, HR@VTs). Heart rate (HR) was monitored during the race and intensity was expressed as: Zone I (VT2) for exercise load calculation (training impulse, TRIMP). Mean race intensity was 77.1%±4.4% of HRmax distributed as: 85.7%±19.4% Zone I, 13.9%±18.6% Zone II, 0.4%±0.9% Zone III. Exercise load was 766±110 TRIMP units. Race time (11.8±1.6h) was negatively correlated with VO2max (r = ?0.66, <0.001) and PMax (r = ?0.73, <0.001), resulting these variables determinant in predicting MUM performance, whereas exercise thresholds did not improve performance prediction. Laboratory variables explained only 59% of race time variance, underlining the multi-factorial character of MUM performance. Our results support the idea that VT1 represents a boundary of tolerable intensity in this kind of events, where exercise load is extremely high. This information can be helpful in identifying optimal pacing strategies to complete such extremely demanding MUMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号