首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Abstract

The aim of this study was to assess the efficacy of electromyography (EMG) normalization methods for a high-speed 20-m sprint. Comparisons were based on intra-individual reliability and magnitude of normalized EMG signals from three repeat sessions separated by 1 day (between days) and 1 week (between weeks) from the initial test. Surface EMGs were recorded (n=16) from the medial and lateral gastrocnemius and soleus during the normalization methods (isometric: maximum/sub-maximum/body weight; isotonic: maximum/sub-maximum/body weight; isokinetic: 1.05 rad · s–1, 1.31 rad · s–1, 1.83 rad · s–1; squat jump). The EMG data from the 20-m sprint were normalized using each method and using the within-sprint peak EMG (sprint peak). Intra-individual reliability of the EMG was assessed using typical error of measurement as a percentage of intra-individual coefficient of variance (TEMCV%). Sprint peak normalization improved intra-individual reliability of EMG (soleus: <4.91CV%; medial gastrocnemius: <6.2CV%; lateral gastrocnemius: <7.1CV%) compared with un-normalized EMG (soleus: <13.3CV%; medial gastrocnemius: <16.5CV%; lateral gastrocnemius: <16.3CV%) both between days and between weeks. Squat jump normalization improved the soleus (<11.2CV%) and medial gastrocnemius (<15.7CV%) reliability between days and weeks and provided a representative measure of triceps surae muscle activation. The intra-individual reliability of the medial gastrocnemius EMG data was improved both between days and weeks when using isotonic normalization. Isometric and isokinetic normalization showed no improvement in intra-individual reliability either between days or weeks for any muscle. The method of normalization influenced the between-stride muscle interaction during the 20-m sprint. The results of this study suggest that peak normalization can be used to normalize high-speed muscle actions, while normalizing EMG to a squat jump may provide an alternative method to represent relative muscle activation.  相似文献   

2.
ABSTRACT

We examined the association between footfall pattern and characteristics of lower limb muscle function and compared lower limb muscle function between forefoot and rearfoot runners. Fifteen rearfoot and 16 forefoot runners were evaluated using ultrasonography of the gastrocnemii and tibialis anterior while strike index and heel strike angle quantified footfall pattern. Higher strike index was associated with lower medial gastrocnemius echo intensity (p = 0.05), lower lateral gastrocnemius echo intensity (p = 0.04), smaller tibialis anterior pennation angle (p = 0.05), and longer lateral gastrocnemius fascicle length (p = 0.04). Larger heel strike angle was associated with smaller medial gastrocnemius cross-sectional area (p = 0.04), shorter lateral gastrocnemius fascicle length (p < 0.01), and lower plantar flexion moment (p < 0.01). Larger plantar flexion moment was associated with lesser medial gastrocnemius echo intensity (p = 0.04), lesser lateral gastrocnemius echo intensity (p = 0.03), and greater lateral gastrocnemius fascicle length (p = 0.02). A smaller plantar flexion moment, larger heel strike angle, lower tibialis anterior echo intensity, larger tibialis anterior pennation angle, and smaller lateral gastrocnemius pennation angle were observed in rearfoot compared to forefoot runners (p < 0.05). Lower limb muscle architecture is associated with footfall pattern and ankle mechanics during running.

Abbreviation: EMG: electromyographic; MG: medial gastrocnemius; LG: lateral gastrocnemius; TA: tibialis anterior; EI: echo intensity; CSA: cross-sectional area; PA: pennation angle; FL: fascicle length; FT: fat thickness  相似文献   

3.
PurposeThe purpose of this study was to examine the reliability and the learning effect of an isokinetic trunk flexion–extension protocol designed to simultaneously assess trunk muscle strength and endurance. In addition, the effect of the participants' sex on the reliability data was examined.MethodsFifty-seven healthy and physically active young men (n = 28) and women (n = 29) performed the isokinetic protocol 5 times, separated by a week between each of the first 4 sessions and by a month between the last 2 sessions. The protocol consisted of performing 4 trials of 15 maximum flexion–extension concentric exertions at 120°/s (range of trunk motion = 50°). The absolute and relative peak torque and total work were calculated to assess trunk flexion and extension strength. In addition, endurance ratio, modified endurance ratio, fatigue final ratio, recovery ratio, and modified recovery ratio variables were used for the assessment of trunk muscle endurance in both directions.ResultsRegarding the absolute reliability, no relevant changes were found between paired-comparison sessions for most strength and endurance variables, except for total work and relative total work variables in the flexion movement in both sexes. In addition, the typical error of the isokinetic variables was lower than 10% in both males and females, and minimum detectable changes ranged from 7% to 20%, with a tendency to be higher in females and in endurance variables. The strength variables showed high-to-excellent intraclass correlation coefficients (ICCs; >0.74); however, for the endurance variables only the endurance ratio and the modified endurance ratio obtained moderate-to-high ICC values (0.57 < ICC < 0.82). In addition, the analysis of the variance reported no significant differences between consecutive pairs of sessions for most variables in both sexes.ConclusionOverall, these findings provide clinicians, trainers, and researchers with a 10-min single-session protocol to perform a reliable muscle strength and endurance evaluation of trunk flexor and extensor muscles, all within the same protocol.  相似文献   

4.
ABSTRACT

The aim of the present investigation was to analyze the validity and reliability of a novel iPhone app (CODTimer) for the measurement of total time and interlimb asymmetry in the 5 + 5 change of direction test (COD). To do so, twenty physically active adolescent athletes (age = 13.85 ± 1.34 years) performed six repetitions in the COD test while being measured with a pair of timing gates and CODTimer. A total of 120 COD times measured both with the timing gates and the app were then compared for validity and reliability purposes. There was an almost perfect correlation between the timing gates and the CODTimer app for the measurement of total time (r = 0.964; 95% Confidence interval (CI) = 0.95–1.00; Standard error of the estimate = 0.03 s.; p < 0.001). Moreover, non-significant, trivial differences were observed between devices for the measurement of total time and interlimb asymmetry (Effect size < 0.2, p > 0.05). Similar levels of reliability were observed between the timing gates and the app for the measurement of the 6 different trials of each participant (Timing gates: Intraclass correlation coefficient (ICC) = 0.651–0.747, Coefficient of variation (CV) = 2.6–3.5%; CODTimer: ICC = 0.671–0.840, CV = 2.2–3.2%). The results of the present study show that change of direction performance can be measured in a valid, reliable way using a novel iPhone app.  相似文献   

5.
The aim of this study was to quantify the validity and intra-tester reliability of a novel method of kinematic measurement. The measurement target was the joint angles of an athlete performing a BMX Supercross (SX) gate start action through the first 1.2 s of movement in situ on a BMX SX ramp using a standard gate start procedure. The method employed GoPro® Hero 4 Silver (GoPro Inc., USA) cameras capturing data at 120 fps 720 p on a ‘normal’ lens setting. Kinovea 0.8.15 (Kinovea.org, France) was used for analysis. Tracking data was exported and angles computed in Matlab (Mathworks®, USA). The gold standard 3D method for joint angle measurement could not safely be employed in this environment, so a rigid angle was used. Validity was measured to be within 2°. Intra-tester reliability was measured by the same tester performing the analysis twice with an average of 55 days between analyses. Intra-tester reliability was high, with an absolute error <6° and <9 frames (0.075 s) across all angles and time points for key positions, respectively. The methodology is valid within 2° and reliable within 6° for the calculation of joint angles in the first ~1.25 s.  相似文献   

6.
BackgroundDuring human locomotion, a sufficiently stiff foot allows the ankle plantar flexors to generate large propulsive powers. Increasing foot stiffness (e.g., via a carbon plate) increases the ankle's external moment arm in relation to the internal moment arm (i.e., increasing gear ratio), reduces plantar flexor muscles’ shortening velocity, and enhances muscle force production. In contrast, when activation of the foot's intrinsic muscles is impaired, there is a reduction in foot and ankle work and metatarsophalangeal joint stiffness. We speculated that the reduced capacity to actively control metatarsophalangeal joint stiffness may impair the gearing function of the foot at the ankle.MethodsWe used a tibial nerve block to examine the direct effects of the intrinsic foot muscles on ankle joint kinetics, in vivo medial gastrocnemius’ musculotendinous dynamics, and ankle gear ratio on 14 participants during maximal vertical jumping.ResultsUnder the nerve block, the internal ankle plantar flexion moment decreased (p = 0.004) alongside a reduction in external moment arm length (p = 0.021) and ankle joint gear ratio (p = 0.049) when compared to the non-blocked condition. Although medial gastrocnemius muscle–tendon unit and fascicle velocity were not different between conditions, the Achilles tendon was shorter during propulsion in the nerve block condition (p < 0.001).ConclusionIn addition to their known role of regulating the energetic function of the foot, our data indicate that the intrinsic foot muscles also act to optimize ankle joint torque production and leverage during the propulsion phase of vertical jumping.  相似文献   

7.
ABSTRACT

Reliability of accelerometer-determined physical activity (PA), and thus the required length of a monitoring period, appears to depend on the analytic approach used for its calculation. We compared reliability of objectively measured PA using different resolution of data in a sample of 221 Norwegian 2–6-year-old children providing 2–3 valid 14-day periods of accelerometer monitoring (ActiGraph GT3X+) during September–October, January–February, and May–June 2015–2016. Reliability (intra-class correlation [ICC]) was measured for 1–14 days of monitoring across the measurement periods using linear mixed effect modelling. These results were compared to reliability estimated using different resolution of data using the Spearman–Brown formula. The measured reliability improved only marginally with increased monitoring length and levelled off after 5–6 days. Estimated reliability differed substantially when derived from different resolution of data: 3.9–5.4, 6.7–9.2, 13.4–26.7 and 26.3–87.7 days of monitoring was required to achieve an ICC = 0.80 using an hour-by-hour, a day-by-day, a week-by-week and a period-by-period approach, respectively. Reliability could not be correctly estimated from any single resolution of data. We conclude that reconsideration is needed with regard to how reproducibility of objectively measured PA is analysed and interpreted.  相似文献   

8.
ABSTRACT

The study assesses the test–retest reliability of movement and physiological measures during a simulated rugby match that employed activities performed in a stochastic order. Twenty male rugby players (21.4 ± 2.1 y) completed two trials of a 2 × 23 min rugby movement simulation protocol during which the order of events was performed in a stochastic order, with 7–10 days between trials. Movement characteristics, heart rate (HR), RPE, maximum voluntary contraction (MVC), voluntary activation (VA%) of the quadriceps, Stroop test and subjective task load rating (NASA-TLX) were measured. The most reliable measures of external load was relative distance (typical error [TE] and CV% = 1.5–1.6 m min?1 and 1.4–1.5%, respectively), with all other movement characteristics possessing a CV% <5%. The most reliable measure of internal load, neuromuscular function and perceptual measures were for %HRmax (TE and CV% = 1.4–1.7% and 1.4–2.1%, respectively), MVC before (TE and CV% = 10.8–14.8 N·m and 3.8–4.6%, respectively), and average RPE (TE and CV% = 0.5–0.8 AU and 3.6–5.5%, respectively). The Stroop test, NASA-TLX and blood lactate produced the least reliable measures (CV% >5%). Future studies can confidently examine changes in several perceptual, neuromuscular, physiological and movement measures related to rugby activity using stochastic movements.  相似文献   

9.
This study aimed to evaluate the within- and between-session reliability of force, velocity and power performances and to assess the force-velocity relationship during the deadlift high pull (DHP). Nine participants performed two identical sessions of DHP with loads ranging from 30 to 70% of body mass. The force was measured by a force plate under the participants’ feet. The velocity of the ‘body + lifted mass’ system was calculated by integrating the acceleration and the power was calculated as the product of force and velocity. The force-velocity relationships were obtained from linear regression of both mean and peak values of force and velocity. The within- and between-session reliability was evaluated by using coefficients of variation (CV) and intraclass correlation coefficients (ICC). Results showed that DHP force-velocity relationships were significantly linear (R² > 0.90, p < 0.05). Within sessions and between sessions, mean and peak forces during DHP showed a strong agreement (CV < 3%, ICC > 0.94), mean and peak velocities showed a good agreement (CV < 9%, 0.78 < ICC < 0.92). It was concluded that DHP performance and its force-velocity relationships are highly reliable and can therefore be utilised as a tool to characterise individuals’ muscular profiles.  相似文献   

10.
Analytical methods to assess thigh muscle balance need to provide reliable data to allow meaningful interpretation. However, reproducibility of the dynamic control ratio at the equilibrium point has not been evaluated yet. Therefore, the aim of this study was to compare relative and absolute reliability indices of its angle and moment values with conventional and functional hamstring–quadriceps ratios. Furthermore, effects of familiarisation and angular velocity on reproducibility were analysed. A number of 33 male volunteers participated in 3 identical test sessions. Peak moments (PMs) were determined unilaterally during maximum concentric and eccentric knee flexion (prone) and extension (supine position) at 0.53, 1.57 and 2.62 rad · s–1. A repeated measure, ANOVA, confirmed systematic bias. Intra-class correlation coefficients and standard errors of measurement indicated relative and absolute reliability. Correlation coefficients were averaged over respective factors and tested for significant differences. All balance scores showed comparable low-to-moderate relative (<0.8–0.9) and good absolute reliability (<10%). Relative reproducibility of dynamic control equilibrium parameters augmented with increasing angular velocity, but not with familiarisation. At 2.62 rad · s–1, high (moment: 0.906) to moderate (angle: 0.833) relative reliability scores with accordingly high absolute indices (4.9% and 6.4%) became apparent. Thus, the dynamic control equilibrium is an equivalent method for the reliable assessment of thigh muscle balance.  相似文献   

11.
The aim of the present study was to examine the effects of viscoelastic properties of human tendon structures during stretch?–?shortening cycle exercise. The elongation of tendon and aponeurosis of the medial gastrocnemius muscle of 26 participants was measured by ultrasonography while they performed ramp isometric plantar flexion up to the voluntary maximum, followed by a ramp relaxation. The relationship between estimated muscle force and tendon elongation during the ascending phase was fitted to a linear regression, the slope of which was defined as stiffness. The percentage of the area within the muscle force?–?tendon elongation loop relative to the area beneath the curve during the ascending phase was defined as hysteresis. In addition, maximal voluntary concentric contractions at 2.09 and 3.14 rad?·?s?1 with and without prior eccentric contractions were performed. The difference in the concentric torque at equivalent joint angles with and without prior eccentric contractions (i.e. pre-stretch augmentation) was negatively correlated with stiffness (P <?0.05) and hysteresis (P <?0.05). Furthermore, there was a higher correlation between the pre-stretch augmentation and the viscoelastic properties index – that is, the sum of normalized score values of stiffness and hysteresis (P <?0.01) – than with either stiffness or hysteresis alone. The results of this study suggest that performance during stretch?–?shortening cycle exercise is significantly affected by the viscoelastic properties of the tendon structures.  相似文献   

12.
Abstract

The study examined the acute neuromuscular and metabolic responses and recovery (24 and 48 h) to combined strength and endurance sessions (SEs). Recreationally endurance trained men (n = 12) and women (n = 10) performed: endurance running followed immediately by a strength loading (combined endurance and strength session (ES)) and the reverse order (SE). Maximal strength (MVC), countermovement jump height (CMJ), and creatine kinase activity were measured pre-, mid-, post-loading and at 24 and 48 h of recovery. MVC and CMJ were decreased (P < 0.05) at post-ES and SE sessions in men. Only MVC decreased in ES and SE women (P < 0.05). During recovery, no order differences in MVC were observed between sessions in men, but MVC and CMJ remained decreased. During recovery in women, a delayed decrease in CMJ was observed in ES but not in SE (P < 0.01), while MVC returned to baseline at 24 h. Creatine kinase increased (P < 0.05) during both ES and SE and peaked in all groups at 24 h. The present combined ES and SE sessions induced greater neuromuscular fatigue at post in men than in women. The delayed fatigue response in ES women may be an order effect related to muscle damage.  相似文献   

13.
This study aimed to assess the validity and reliability of jump assessments using the MyJump2 application. Eleven junior athletes (15 ± 1.4 years) performed five countermovement (CMJ) and drop jumps (DJ) measured simultaneously by a force platform and MyJump2. Additionally, intra- and inter-day reliability was assessed over two sessions, 7 days apart. Extremely high agreement between MyJump2 and the force platform (intra-class correlation coefficient, ICC ≥ 0.99) and the intra- and inter-operator agreement (ICC = 0.98–0.99) confirmed the validity and reliability of MyJump2. Mean typical errors (coefficient of variation percentage, CV%) within the first and second sessions were 4.9% and 4.5% respectively for CMJs, and 8.0% to 11.8% for DJ outcomes. CMJ height held acceptable inter-day reliability (CV < 10%; ICC > 0.8), while DJ did not. Results supported MyJump2 to be a valid and reliable tool for assessing jumps; however, with variability in DJs in this cohort, appropriate caution should be taken if including in a junior assessment battery.  相似文献   

14.
ABSTRACT

This study aimed to investigate the influence of foot strike patterns on the behaviour of the triceps surae muscle-tendon unit, including the Achilles tendon whose length nearly corresponds to force of the triceps surae, and the medial gastrocnemius muscle (MG) during running. Seven male volunteers ran with forefoot and rearfoot strikes at 10, 14 and 18 km h?1 on a treadmill. The MG fascicle length was measured using ultrasonography. The in vivo length of the curved Achilles tendon was quantified by combining ultrasonography with optical motion capture of reflective markers on the right lower limb and an ultrasound probe. The forefoot strike resulted in a significantly shorter MG fascicle length at the initial contact, at Achilles tendon peak elongation, and at toe-off, than the rearfoot strike. The Achilles tendon length at initial contact was greater during the forefoot strike than during the rearfoot strike at 18 km h?1, while its peak elongation was not significantly different during forefoot and rearfoot running. These results indicate that the MG, with a shorter length during forefoot running, manages to address demands for a similar peak force of the triceps surae than during rearfoot running.  相似文献   

15.
Abstract

The aim of the current study was to investigate the validity and reliability of a radio frequency-based system for accurately tracking athlete movement within wheelchair court sports. Four wheelchair-specific tests were devised to assess the system during (i) static measurements; (ii) incremental fixed speeds; (iii) peak speeds; and (iv) multidirectional movements. During each test, three sampling frequencies (4, 8 and 16 Hz) were compared to a criterion method for distance, mean and peak speeds. Absolute static error remained between 0.19 and 0.32 m across the session. Distance values (test (ii)) showed greatest relative error in 4 Hz tags (1.3%), with significantly lower errors seen in higher frequency tags (<1.0%). Relative peak speed errors of <2.0% (test (iii)) were revealed across all sampling frequencies in relation to the criterion (4.00 ± 0.09 m · sˉ1). Results showed 8 and 16 Hz sampling frequencies displayed the closest-to-criterion values, whilst intra-tag reliability never exceeded 2.0% coefficient of variation (% CV) during peak speed detection. Minimal relative distance errors (<0.2%) were also seen across sampling frequencies (test (iv)). To conclude, the indoor tracking system is deemed an acceptable tool for tracking wheelchair court match play using a tag frequency of 8 or 16 Hz.  相似文献   

16.
Abstract

The purpose of this study was to investigate changes in ankle joint stiffness and the associated changes in the gastrocnemius muscle and tendon due to static stretching. Seven healthy male participants lay supine with the hip and knee joints fully extended. The right ankle joint was rotated into dorsiflexion from a 30° plantar flexed position and the torque measured by a dynamometer. The ankle joint was maintained in a dorsiflexed position for 20 min (static stretching of the calf muscles). We performed surface electromyography of the medial and lateral gastrocnemii, the soleus, and the tibialis anterior of the right leg to confirm no muscle activity throughout static stretching and the passive test (passive dorsiflexion). During static stretching, the ankle joint angle and elongation of the gastrocnemius were recorded by goniometry and ultrasonography, respectively. Tendon elongation of the gastrocnemius was calculated based on the changes in the ankle joint angle and muscle elongation. In addition, the relationships between passive torques and ankle joint angles, and elongation of muscle and tendon, were examined before and after static stretching. The ankle dorsiflexion angle and tendon elongation increased significantly by 10 min after the onset of static stretching, while there was no further increase in muscle length. In addition, ankle dorsiflexion angle and tendon elongation at an identical passive torque (30 N · m) increased significantly (from 24±7° to 33±5° and from 17±2 mm to 22±1 mm, respectively) after static stretching. However, muscle elongation was unchanged. In conclusion, the current results suggest that an increase in the ankle joint dorsiflexion angle due to static stretching is attributable to a change in tendon not muscle stiffness.  相似文献   

17.
The counter-movement jump is a consequence of maximal force, rate of force developed, and neuromuscular coordination. Thus, the counter-movement jump has been used to monitor various training adaptations. However, the smallest detectable difference of counter-movement jump metrics has yet to be established. The objective of the present study was to measure the reliability of counter-movement jump metrics, including rate of force development, flight time, time to max force, and max force. Twenty-nine male participants (mean age 25 ± 3 years) were divided into three groups. Each participant performed five counter-movement jumps on a force plate, on three consecutive days. Flight time detected trivial changes, (effect size < .2) and typical error of measurement of .25%; max force detected small changes (effect size < .5) with a typical error of measurement of .3%; rate of force development detected small to medium change (effect size .5–.8) with a typical error of measurement of .3%.  相似文献   

18.
Abstract

The study investigated different electromyographic (EMG) normalisation methods for upper-limb muscles. This assessment aimed at comparing the EMG amplitude and the reliability of EMG values obtained with each method. Eighteen male tennis players completed isometric maximal voluntary contractions and dynamic strength exercises (push-ups and chin-ups) on three separate test sessions over at least 7 days. Surface EMG activity of nine upper body muscles was recorded. For each muscle, an analysis of variance for repeated measures was used to compare maximal EMG amplitudes between test conditions. The intra-class correlation coefficient, the coefficient of variation and the standard error of measurement were calculated to determine the EMG reliability of each condition. On the basis of a compromise between maximal EMG amplitude and high reliability, the chin-ups appeared to be the optimal normalisation method for M. latissimus dorsi, M. posterior deltoid, M. biceps brachii, M. flexor carpi radialis and M. extensor carpi radialis. The push-ups seemed relevant to normalise M. anterior deltoid and M. triceps brachii activity, while isometric maximal voluntary contraction remained the most appropriate method for M. pectoralis major and M. middle deltoid. Thus, original methods are proposed to normalise EMG signal of upper-limb muscles.  相似文献   

19.
20.
Abstract

The purpose of this study was to determine the effects of intensified physical education sessions on adolescents ages 11–16 years. They were divided into two experimental groups—high-intensity running group (HIRG) and high-intensity jumping group (HIJG)—and a control group (C). During the sessions, heart rate (HR) was monitored. There was no significant difference between mean HR for HIRG and HIJG, while the mean HR was significantly lower for C (p < .001). For both HIRG and HIJG, the mean HR was significantly higher for girls than for boys (p < .001). Our results suggested that these intensified physical education lessons require a high percentage of maximal HR in adolescents and can be used to improve aerobic fitness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号