首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The primary roles for nutrition in sprints are for recovery from training and competition and influencing training adaptations. Sprint success is determined largely by the power-to-mass ratio, so sprinters aim to increase muscle mass and power. However, extra mass that does not increase power may be detrimental. Energy and protein intake are important for increasing muscle mass. If energy balance is maintained, increased mass and strength are possible on a wide range of protein intakes, so energy intake is crucial. Most sprinters likely consume ample protein. The quantity of energy and protein intake necessary for optimal training adaptations depends on the individual athlete and training demands; specific recommendations for all sprinters are, at best, useless, and are potentially harmful. However, if carbohydrate and fat intake are sufficient to maintain energy levels, then increased protein intake is unlikely to be detrimental. The type and timing of protein intake and nutrients ingested concurrently must be considered when designing optimal nutritional strategies for increasing muscle mass and power. On race day, athletes should avoid foods that result in gastrointestinal discomfort, dehydration or sluggishness. Several supplements potentially influence sprint training or performance. Beta-alanine and bicarbonate may be useful as buffering agents in longer sprints. Creatine may be efficacious for increasing muscle mass and strength and perhaps increasing intensity of repeat sprint performance during training.  相似文献   

2.
Ramadan fasting, involving abstinence from fluid and food from sunrise to sundown, results in prolonged periods without nutrient intake and inflexibility with the timing of eating and drinking over the day. Dietary choices may also change due to special eating rituals. Although nutrition guidelines are specific to the sport, to the periodized training and competition calendar, and to the individual, many promote the consumption of carbohydrate and fluid before and during exercise, and consumption of protein, carbohydrate, and fluids soon after the session is completed. Failing to meet overall nutritional needs, or to provide specific nutritional support to a session of exercise, is likely to impair acute performance and reduce the effectiveness of training or recovery. Muslim athletes who fast during Ramadan should use overnight opportunities to consume foods and drinks that can supply the nutrients needed to promote performance, adaptation, and recovery in their sports. Because of the benefits of being able to consume at least some of these nutrients before, during or after an exercise session, the schedule of exercise should be shifted where possible to the beginning or end of the day, or during the evening when some nutritional support can be provided.  相似文献   

3.
Throwers, jumpers, and combined events athletes require speed, strength, power, and a wide variety of technical skills to be successful in their events. Only a handful of studies have assessed the nutritional needs of such athletes. Because of this, recommendations for nutritional requirements to support and enhance training and competition performances for these athletes are made using research findings from sports and exercise protocols similar to their training and competitive events. The goals of the preparation cycle of nutrition periodization for these athletes include attaining desirable body weight, a high ratio of lean body mass to body height, and improving muscular power. Nutritional recommendations for training and competition periods include: (1) meeting energy needs; (2) timing consumption of adequate fluid and electrolyte intakes before, during, and after exercise to promote adequate hydration; (3) timing consumption of carbohydrate intake to provide adequate fuel for energy demands and to spare protein for muscle repair, growth, and maintenance; (4) timing consumption of adequate protein intake to meet protein synthesis and turnover needs; and (5) consuming effective nutritional and dietary supplements. Translating these nutrient and dietary recommendations into guidelines these athletes can apply during training and competition is important for enhancing performance.  相似文献   

4.
Soccer players should achieve an energy intake that provides sufficient carbohydrate to fuel the training and competition programme, supplies all nutrient requirements, and allows manipulation of energy or nutrient balance to achieve changes in lean body mass, body fat or growth. Although the traditional culture of soccer has focused on carbohydrate intake for immediate match preparation, top players should adapt their carbohydrate intake on a daily basis to ensure adequate fuel for training and recovery between matches. For players with a mobile playing style, there is sound evidence that dietary programmes that restore and even super-compensate muscle glycogen levels can enhance activity patterns during matches. This will presumably also benefit intensive training, such as twice daily practices. As well as achieving a total intake of carbohydrate commensurate with fuel needs, the everyday diet should promote strategic intake of carbohydrate and protein before and after key training sessions to optimize the adaptations and enhance recovery. The achievement of the ideal physique for soccer is a long-term goal that should be undertaken over successive years, and particularly during the off-season and pre-season. An increase in lean body mass or a decrease in body fat is the product of a targeted training and eating programme. Consultation with a sports nutrition expert can assist soccer players to manipulate energy and nutrient intake to meet such goals. Players should be warned against the accidental or deliberate mismatch of energy intake and energy expenditure, such that energy availability (intake minus the cost of exercise) falls below 125 kJ (30 kcal) per kilogram of fat-free mass per day. Such low energy availability causes disturbances to hormonal, metabolic, and immune function.  相似文献   

5.
Carbohydrates and fat for training and recovery   总被引:3,自引:0,他引:3  
An important goal of the athlete's everyday diet is to provide the muscle with substrates to fuel the training programme that will achieve optimal adaptation for performance enhancements. In reviewing the scientific literature on post-exercise glycogen storage since 1991, the following guidelines for the training diet are proposed. Athletes should aim to achieve carbohydrate intakes to meet the fuel requirements of their training programme and to optimize restoration of muscle glycogen stores between workouts. General recommendations can be provided, preferably in terms of grams of carbohydrate per kilogram of the athlete's body mass, but should be fine-tuned with individual consideration of total energy needs, specific training needs and feedback from training performance. It is valuable to choose nutrient-rich carbohydrate foods and to add other foods to recovery meals and snacks to provide a good source of protein and other nutrients. These nutrients may assist in other recovery processes and, in the case of protein, may promote additional glycogen recovery when carbohydrate intake is suboptimal or when frequent snacking is not possible. When the period between exercise sessions is < 8 h, the athlete should begin carbohydrate intake as soon as practical after the first workout to maximize the effective recovery time between sessions. There may be some advantages in meeting carbohydrate intake targets as a series of snacks during the early recovery phase, but during longer recovery periods (24 h) the athlete should organize the pattern and timing of carbohydrate-rich meals and snacks according to what is practical and comfortable for their individual situation. Carbohydrate-rich foods with a moderate to high glycaemic index provide a readily available source of carbohydrate for muscle glycogen synthesis, and should be the major carbohydrate choices in recovery meals. Although there is new interest in the recovery of intramuscular triglyceride stores between training sessions, there is no evidence that diets which are high in fat and restricted in carbohydrate enhance training.  相似文献   

6.
An important goal of the athlete's everyday diet is to provide the muscle with substrates to fuel the training programme that will achieve optimal adaptation for performance enhancements. In reviewing the scientific literature on post-exercise glycogen storage since 1991, the following guidelines for the training diet are proposed. Athletes should aim to achieve carbohydrate intakes to meet the fuel requirements of their training programme and to optimize restoration of muscle glycogen stores between workouts. General recommendations can be provided, preferably in terms of grams of carbohydrate per kilogram of the athlete's body mass, but should be fine-tuned with individual consideration of total energy needs, specific training needs and feedback from training performance. It is valuable to choose nutrient-rich carbohydrate foods and to add other foods to recovery meals and snacks to provide a good source of protein and other nutrients. These nutrients may assist in other recovery processes and, in the case of protein, may promote additional glycogen recovery when carbohydrate intake is suboptimal or when frequent snacking is not possible. When the period between exercise sessions is <8?h, the athlete should begin carbohydrate intake as soon as practical after the first workout to maximize the effective recovery time between sessions. There may be some advantages in meeting carbohydrate intake targets as a series of snacks during the early recovery phase, but during longer recovery periods (24?h) the athlete should organize the pattern and timing of carbohydrate-rich meals and snacks according to what is practical and comfortable for their individual situation. Carbohydrate-rich foods with a moderate to high glycaemic index provide a readily available source of carbohydrate for muscle glycogen synthesis, and should be the major carbohydrate choices in recovery meals. Although there is new interest in the recovery of intramuscular triglyceride stores between training sessions, there is no evidence that diets which are high in fat and restricted in carbohydrate enhance training.  相似文献   

7.
田径运动员营养的应用策略(综述)   总被引:1,自引:1,他引:0       下载免费PDF全文
赵德峰 《体育科研》2008,29(5):53-64
田径作为世界上最为普及的体育运动,是比速度、高度、远度和耐力的体能项目。通常将田径项目划分为短跑、中长跑、长距离、投掷、跳跃和全能等项目。田径各项目的供能特点有着非常明显的差别,三大营养素的供给和补充剂的应用策略有着明显的区别。在训练和比赛中给与运动员合理的营养对各项目运动员取得良好的训练适应和优异的成绩有着重要的作用。通过对各项目营养需要解决的主要问题的分析,全面阐述田径各项日训练和比赛时三大营养素和补充剂的应用策略。  相似文献   

8.
Athletics is a popular sport among young people. To maintain health and optimize growth and athletic performance, young athletes need to consume an appropriate diet. Unfortunately, the dietary intake of many young athletes follows population trends rather than public health or sports nutrition recommendations. To optimize performance in some disciplines, young athletes may strive to achieve a lower body weight or body fat content and this may increase their risk for delayed growth and maturation, amenorrhoea, reduced bone density, and eating disorders. Although many of the sports nutrition principles identified for adults are similar to those for young athletes, there are some important differences. These include a higher metabolic cost of locomotion and preferential fat oxidation in young athletes during exercise. Young athletes, particularity children, are at a thermoregulatory disadvantage due to a higher surface area to weight ratio, a slower acclimatization, and lower sweating rate. An appropriate dietary intake rather than use of supplements (except when clinically indicated) is recommended to ensure young athletes participate fully and safely in athletics.  相似文献   

9.
黄新 《湖北体育科技》2008,27(5):542-543
研究目的:探讨青少年运动员对营养知识的掌握、饮食习惯的现状和膳食营养状况,为指导运动员合理膳食营养及开展营养知识宣传教育提供依据。研究方法:以浦东新区青少年运动员为对象,共302人。采用膳食调查和营养知识和饮食习惯的问卷调查。研究结果:男、女青少年运动员的能量摄入量均不足,且三大能源物质比例摄取不合理;结论与建议:1加强供能物质谷类食物的摄入2加强钙的摄入3多吃蔬菜和水果,补充维生素。  相似文献   

10.
An athlete's carbohydrate intake can be judged by whether total daily intake and the timing of consumption in relation to exercise maintain adequate carbohydrate substrate for the muscle and central nervous system ("high carbohydrate availability") or whether carbohydrate fuel sources are limiting for the daily exercise programme ("low carbohydrate availability"). Carbohydrate availability is increased by consuming carbohydrate in the hours or days prior to the session, intake during exercise, and refuelling during recovery between sessions. This is important for the competition setting or for high-intensity training where optimal performance is desired. Carbohydrate intake during exercise should be scaled according to the characteristics of the event. During sustained high-intensity sports lasting ~1 h, small amounts of carbohydrate, including even mouth-rinsing, enhance performance via central nervous system effects. While 30-60 g · h(-1) is an appropriate target for sports of longer duration, events >2.5 h may benefit from higher intakes of up to 90 g · h(-1). Products containing special blends of different carbohydrates may maximize absorption of carbohydrate at such high rates. In real life, athletes undertake training sessions with varying carbohydrate availability. Whether implementing additional "train-low" strategies to increase the training adaptation leads to enhanced performance in well-trained individuals is unclear.  相似文献   

11.
Middle-distance athletes implement a dynamic continuum in training volume, duration, and intensity that utilizes all energy-producing pathways and muscle fibre types. At the centre of this periodized training regimen should be a periodized nutritional approach that takes into account acute and seasonal nutritional needs induced by specific training and competition loads. The majority of a middle-distance athlete's training and racing is dependant upon carbohydrate-derived energy provision. Thus, to support this training and racing intensity, a high carbohydrate intake should be targeted. The required energy expenditure throughout each training phase varies significantly, and thus the total energy intake should also vary accordingly to better maintain an ideal body composition. Optimizing acute recovery is highly dependant upon the immediate consumption of carbohydrate to maximize glycogen resynthesis rates. To optimize longer-term recovery, protein in conjunction with carbohydrate should be consumed. Supplementation of beta-alanine or sodium bicarbonate has been shown to augment intra- and extracellular buffering capacities, which may lead to a small performance increase. Future studies should aim to alter specific exercise (resistance vs. endurance) and/or nutrition stimuli and measure downstream effects at multiple levels that include gene and molecular signalling pathways, leading to muscle protein synthesis, that result in optimized phenotypic adaptation and performance.  相似文献   

12.
Many athletes use dietary supplements as part of their regular training or competition routine, including about 85% of elite track and field athletes. Supplements commonly used include vitamins, minerals, protein, creatine, and various "ergogenic" compounds. These supplements are often used without a full understanding or evaluation of the potential benefits and risks associated with their use, and without consultation with a sports nutrition professional. A few supplements may be helpful to athletes in specific circumstances, especially where food intake or food choice is restricted. Vitamin and mineral supplements should be used only when a food-based solution is not available. Sports drinks, energy bars, and protein-carbohydrate shakes may all be useful and convenient at specific times. There are well-documented roles for creatine, caffeine, and alkalinizing agents in enhancing performance in high-intensity exercise, although much of the evidence does not relate to specific athletic events. There are potential costs associated with all dietary supplements, including the risk of a positive doping result as a consequence of the presence of prohibited substances that are not declared on the label.  相似文献   

13.
For the athlete training hard, nutritional supplements are often seen as promoting adaptations to training, allowing more consistent and intensive training by promoting recovery between training sessions, reducing interruptions to training because of illness or injury, and enhancing competitive performance. Surveys show that the prevalence of supplement use is widespread among sportsmen and women, but the use of few of these products is supported by a sound research base and some may even be harmful to the athlete. Special sports foods, including energy bars and sports drinks, have a real role to play, and some protein supplements and meal replacements may also be useful in some circumstances. Where there is a demonstrated deficiency of an essential nutrient, an increased intake from food or from supplementation may help, but many athletes ignore the need for caution in supplement use and take supplements in doses that are not necessary or may even be harmful. Some supplements do offer the prospect of improved performance; these include creatine, caffeine, bicarbonate and, perhaps, a very few others. There is no evidence that prohormones such as androstenedione are effective in enhancing muscle mass or strength, and these prohormones may result in negative health consequences, as well as positive drug tests. Contamination of supplements that may cause an athlete to fail a doping test is widespread.  相似文献   

14.
For the athlete training hard, nutritional supplements are often seen as promoting adaptations to training, allowing more consistent and intensive training by promoting recovery between training sessions, reducing interruptions to training because of illness or injury, and enhancing competitive performance. Surveys show that the prevalence of supplement use is widespread among sportsmen and women, but the use of few of these products is supported by a sound research base and some may even be harmful to the athlete. Special sports foods, including energy bars and sports drinks, have a real role to play, and some protein supplements and meal replacements may also be useful in some circumstances. Where there is a demonstrated deficiency of an essential nutrient, an increased intake from food or from supplementation may help, but many athletes ignore the need for caution in supplement use and take supplements in doses that are not necessary or may even be harmful. Some supplements do offer the prospect of improved performance; these include creatine, caffeine, bicarbonate and, perhaps, a very few others. There is no evidence that prohormones such as androstenedione are effective in enhancing muscle mass or strength, and these prohormones may result in negative health consequences, as well as positive drug tests. Contamination of supplements that may cause an athlete to fail a doping test is widespread.  相似文献   

15.
Contemporary training for power sports involves diverse routines that place a wide array of physiological demands on the athlete. This requires a multi-faceted nutritional strategy to support both general training needs--tailored to specific training phases--as well as the acute demands of competition. Elite power sport athletes have high training intensities and volumes for most of the training season, so energy intake must be sufficient to support recovery and adaptation. Low pre-exercise muscle glycogen reduces high-intensity performance, so daily carbohydrate intake must be emphasized throughout training and competition phases. There is strong evidence to suggest that the timing, type, and amount of protein intake influence post-exercise recovery and adaptation. Most power sports feature demanding competition schedules, which require aggressive nutritional recovery strategies to optimize muscle glycogen resynthesis. Various power sports have different optimum body compositions and body weight requirements, but increasing the power-to-weight ratio during the championship season can lead to significant performance benefits for most athletes. Both intra- and extracellular buffering agents may enhance performance, but more research is needed to examine the potential long-term impact of buffering agents on training adaptation. Interactions between training, desired physiological adaptations, competition, and nutrition require an individual approach and should be continuously adjusted and adapted.  相似文献   

16.
体能是影响足球比赛成绩的重要因素之一,科学合理的营养补充策略能够增强运动员体能,从而提高运动表现,取得最佳成绩。通过分析足球运动的专项特点和能量代谢特征,根据足球运动员的营养需求,综述了该领域国内外研究进展,认为足球运动员应坚持以高糖膳食为主,多种营养成份合理搭配的原则,还可针对性选用运动营养补剂,满足足球运动日益激烈的训练和比赛需要,以期为相关从业者提供参考。  相似文献   

17.
Winter sports are played in cold conditions on ice or snow and often at moderate to high altitude. The most important nutritional challenges for winter sport athletes exposed to environmental extremes include increased energy expenditure, accelerated muscle and liver glycogen utilization, exacerbated fluid loss, and increased iron turnover. Winter sports, however, vary greatly regarding their nutritional requirements due to variable physiological and physique characteristics, energy and substrate demands, and environmental training and competition conditions. What most winter sport athletes have in common is a relatively lean physique and high-intensity training periods, thus they require greater energy and nutrient intakes, along with adequate food and fluid before, during, and after training. Event fuelling is most challenging for cross-country skiers competing in long events, ski jumpers aiming to reduce their body weight, and those winter sport athletes incurring repeated qualification rounds and heats. These athletes need to ensure carbohydrate availability throughout competition. Finally, winter sport athletes may benefit from dietary and sport supplements; however, attention should be paid to safety and efficacy if supplementation is considered.  相似文献   

18.
康杰 《体育科研》2016,(4):1-10
运动员的日常饮食会影响其运动表现,而在训练和比赛中过程中不同的食物选择也会影响其训练和比赛的状态。良好的饮食习惯可以在强化训练的同时减少疾病和损伤的发生风险,还会提高肌肉及其他组织的训练适应性。通过国际奥林匹克委员会2012年运动营养指南的解读,对运动营养指南各个部分的生理学原理、研究依据、示例、具体建议进行阐释,使其更容易为教练员、运动员及科研人员所理解、掌握。虽然没有所谓的"全能饮食",但还是有很多可以让运动员吃得更好的方法应用于特定的比赛和专项中。  相似文献   

19.
咖啡因作为一种功能增进营养补剂,广泛应用于耐力运动员的训练和竞赛中。通过系统梳理探讨摄入咖啡因对耐力运动员计时赛、恒定负荷运动和递增负荷运动至力竭3种类型运动表现影响的相关研究,总结咖啡因对耐力运动员运动表现的影响规律,以期为我国教练员和运动员优化营养补剂方案提供理论依据。结果显示,自行车、中长跑及赛艇等耐力运动员多以胶囊形式摄入低中高剂量咖啡因(3~9 mg/kg)来提高耐力运动表现,但对于不同类型运动表现的有效剂量及作用机制存在差异。另外,咖啡因与其他营养补剂混合摄入的效果以及咖啡因不同摄入方式、性别差异、基因组别、安慰剂效应等对其功能增进效果的影响是咖啡因研究领域未来的发展方向。  相似文献   

20.
科学合理的营养补充是运动员取得良好运动成绩的前提条件。通过营养素的使用,使运动员能够跟上训练节奏,较好地完成教练员的训练计划。通过长期的运动训练实践,总结出如何进行力量训练的营养补充,以及达到怎样的恢复效果。有针对性的、合理的营养素(糖、电解质、维生素等)补充,可以帮助运动员加快运动后疲劳的恢复。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号