首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, the problem of parameter-dependent robust stability analysis is addressed for uncertain Markovian jump linear systems (MJLSs) with polytopic parameter uncertainties and time-varying delay. By constructing parameter-dependent Lyapunov functional, some sufficient conditions are developed to enable robust exponential mean square stability for the systems. New parameter-dependent robust stability criteria for MJLSs are established in the form of linear matrix inequalities (LMIs), which can be solved efficiently by the interior-point algorithm. Finally, a numerical example is given to demonstrate the effectiveness of the proposed approach.  相似文献   

2.
This paper presents new exponential stability and stabilization conditions for a class of uncertain linear time-delay systems. The unknown norm-bounded uncertainties and the delays are time-varying. Based on an improved Lyapunov-Krasovskii functional combined with Leibniz-Newton formula, the robust stability conditions are derived in terms of linear matrix inequalities (LMIs), which allows to compute simultaneously the two bounds that characterize the exponential stability rate of the solution. The result can be extended to uncertain systems with time-varying multiple delays. The effectiveness of the two stability bounds and the reduced conservatism of the conditions are shown by numerical examples.  相似文献   

3.
This paper focuses on the problem of advancing a theorem to estimate the stability bound of delay decay rate α and upper bound delay time τ to guarantee the stability of time-delay systems. Based on the Lyapunov–Krasovskii functional techniques and linear matrix inequality tools, exponential stability and decaying rate for linear time-delay systems are also derived. These results are shown to be less conservative than those reported in the literature. Examples are included to illustrate our results.  相似文献   

4.
This paper deals with the problems of non-fragile robust stochastic stabilization and robust H control for uncertain stochastic nonlinear time-delay systems. The parameter uncertainties are assumed to be time-varying norm-bounded appearing in both state and input matrices. The time-delay is unknown and time-varying with known bounds. The non-fragile robust stochastic stabilization problem is to design a memoryless non-fragile state feedback controller such that the closed-loop system is robustly stochastically stable for all admissible parameter uncertainties. The purpose of robust H control problem, in addition to robust stochastical stability requirement, is to reduce the effect of the disturbance input on the controlled output to a prescribed level. Using the Lyapunov functional method and free-weighting matrices, delay-dependent sufficient conditions for the solvability of these problems are established in terms of linear matrix inequality (LMI). Numerical example is provided to show the effectiveness of the proposed theoretical results.  相似文献   

5.
Sampled-data control for time-delay systems   总被引:1,自引:0,他引:1  
The sampled-data systems are hybrid ones involving continuous time and discrete time signals, which makes the traditional analysis and synthesis methodologies of time-delay systems unable to be directly used in the cases of hybrid systems with time-delay. The primary disadvantages of current design techniques of sampled-data control are their inabilities to deal effectively with time-delay and the model uncertainty. In this paper, we generalized the analysis methodology of time-delay systems to that of the hybrid systems with time-delay and uncertainty, which developed a design procedure of sampled-data control for time-delay systems. Asymptotic stability of the time-delay hybrid systems was developed. The time-delay dependent robust sampled-data control for the time-varying delay of an uncertain linear system was then discussed. The results were described as linear matrix inequalities, which can be solved using newly released LMITool.  相似文献   

6.
This paper aims at establishing necessary and sufficient conditions of exponential stability for linear discrete-time systems with multiple delays. Firstly, we introduce a new concept—Lyapunov matrix, and investigate its properties, existence and uniqueness by: (i) characterizing the solution of a boundary value problem of matrix difference equations; and (ii) constructing complete type Lyapunov–Krasovskii functionals with pre-specified forward difference. Secondly, a new constructive analysis methodology, named Lyapunov matrix approach, is proposed to establish necessary and sufficient exponential stability conditions for discrete-time systems with multiple delays. Finally, two numerical examples are presented to illustrate the effectiveness of the theoretical results. It is worth emphasizing that, from a view of computation, the Lyapunov matrix approach proposed here is concerned with three key steps: (i) solve a systems of linear equations; (ii) check whether a constant matrix is of full-column-rank, and (iii) judge whether a constant matrix is positive definite. All of these can be easily realized by using the tool software—MATLAB.  相似文献   

7.
《Journal of The Franklin Institute》2019,356(18):11561-11580
This paper addresses the robust H filter design problem for a class of uncertain fuzzy neutral stochastic system with time-delay through Takagi–Sugeno (T–S) fuzzy model. By constructing an augmented Lyapunov–Krasovskii functional, some novel delay-dependent stability criteria for uncertain fuzzy neutral stochastic system with time varying delay are obtained in terms of linear matrix inequalities. By using the integral inequality in the neutral stochastic setting combined with delay decomposition approach, the H fuzzy filter is designed to guarantee the corresponding filtering error systems robustly asymptotically stable with a specified H performance index. At last, two numerical examples are presented to show the less conservatism than the previous results.  相似文献   

8.
This paper is concerned with the problem of global robust asymptotic stability for delayed neural networks with polytopic parameter uncertainties and time-varying delay. A delay-dependent and parameter-dependent robust stability criterion for the equilibrium of delayed neural networks in the face of polytopic type uncertainties is presented by using a parameter-dependent Lyapunov functional and taking the relationship between the terms in the Leibniz–Newton formula into account. This criterion, expressed as a set of linear matrix inequalities, requires no matrix variable to be fixed for the entire uncertainty polytope, which produces a less conservative stability result.  相似文献   

9.
In this paper, we will give necessary conditions for the exponential stability of linear neutral type systems with multiple time delays by employing the Lyapunov–Krasovskii functional approach. These conditions not only extend the existing results of the neutral-delay-free systems, but also provide a new tool for stability analysis of linear neutral type systems with multiple time delays by characterizing instability domains. As a medium step, we will investigate several crucial properties which are involved with both the fundamental matrix and Lyapunov matrix. Numerical examples illustrate the validity of the theoretical results.  相似文献   

10.
In this paper, we design observer-based feedback control for a class of linear systems. The novelty of the paper comes from the consideration of an augmented weighted based integral inequality involving quadratic functions with an exponential term which is less conservative than the celebrated weighted integral inequality employed in the context of time-delay systems. By using appropriately chosen Lyapunov–Krasovskii functional (LKF), together with the derived integral inequality, a new sufficient condition for exponential stability in terms of linear matrix inequalities (LMIs) is proposed for the delayed linear systems with state feedback control. Finally, the applicability and superiority of the proposed theoretical results over the existing ones are analyzed in virtue of numerical examples.  相似文献   

11.
This paper investigates the problem of stability and state-feedback control design for linear parameter-varying systems with time-varying delays. The uncertain parameters are assumed to belong to a polytope with bounded known variation rates. The new conditions are based on the Lyapunov theory and are expressed through Linear Matrix Inequalities. An alternative parameter-dependent Lyapunov-Krasovskii functional is employed and its time-derivative is handled using recent integral inequalities for quadratic functions proposed in the literature. As main results, a novel sufficient stability condition for delay-dependent systems as well as a new sufficient condition to design gain-scheduled state-feedback controllers are stated. In the new proposed methodology, the Lyapunov matrices and the system matrices are put separated making it suitable for supporting in a new way the design of the stabilization controller. An example, based on a model of a real-world problem, is provided to illustrate the effectiveness of the proposed method.  相似文献   

12.
基于参数相关Lyapunov泛函不确定时滞系统的鲁棒稳定性   总被引:3,自引:0,他引:3  
研究了含多面体不确定性的时滞系统的鲁棒稳定性问题。利用参数相关的Lyapunov泛函,得到了基于LMI的时滞系统时滞相关的鲁棒稳定的充分条件。在该条件中不确定系统在多面体不同的顶点用不同的Lyapunov阵判断其稳定性,而已有的结果为在所有的顶点用一个共同Lyapunov阵分析。进一步,将确定系统稳定的最大时滞问题转化为求广义特征值的拟凸优化问题。最后数值例子说明了该方法有较小的保守性  相似文献   

13.
14.
In this paper, the balanced truncation method is investigated for discrete time-delay systems. We show that the energy associated with the system controllability and observability can be characterized via the delay Lyapunov matrices, similar to the case of continuous time-delay systems. Then, we balance the system via a coordinate transformation in order to retain the delay structure of systems naturally. In this way, the balanced truncation method is conducted to obtain structure-preserving reduced models. Further, we provide an efficient process to compute a low-rank approximation to delay Lyapunov matrices based on the equivalent expression of discrete time-delay systems, which enables an approximate but fast execution of the proposed method. The stability of reduced models is also discussed in the paper. Finally, numerical examples are simulated to verify the feasibility and efficiency of the proposed method.  相似文献   

15.
分别针对具有非结构不确定性、强结构不确定性线性离散系统,利用lyapunov方法进行讨论,给出了相应系统的鲁棒稳定性判别条件,并通过算例进行了验证。  相似文献   

16.
In this paper, the exponential stabilization problem of uncertain T–S fuzzy systems with time-varying delay is emulated by fuzzy sampled-data H control. Firstly, a novel suitable Lyapunov–Krasovskii function is constructed, which contains all the information about the sampling pattern. Secondly, a less conservative result is achieved by using an extended Jensen inequality, and purposefully using a compact free weighting matrix. In addition, according to the linear matrix inequality (LMI), some sampled-data H exponential stability sufficient conditions and controller design of T–S fuzzy systems are established. Finally, effectiveness gives some illustrative examples may be used to display the value of the current proposed method as well as a significant improvement.  相似文献   

17.
In this paper, we first deal with the robust stability of uncertain linear stochastic differential delay systems. The parameter uncertainties are time-varying and unknown but are norm-bounded via two types of uncertainties, and the delays are time invariant. We then extend the proposed theory to discuss the robust stabilization of uncertain stochastic differential delay systems. These results are given in terms of linear matrix inequalities. Two examples are presented to illustrate the effectiveness.  相似文献   

18.
This paper is concerned with robust stability analysis of second-order linear time-varying (SLTV) systems with time-varying uncertainties (perturbations). With the specific Lyapunov functions, a simple and neat algebraic criterion for testing uniformly asymptotic stability of SLTV systems are derived. Without transformation to a system of first-order equations, the new conditions are imposed directly on the time-varying coefficient matrices of the system. The main feature of the proposed algebraic criterion is that the uncertain coefficient matrices are time-varying and not necessarily symmetric. Finally, the proposed stability conditions are used to design the extending space structures system of the spacecraft. Simulation results are provided to illustrate the convenience and effectiveness of the proposed method.  相似文献   

19.
This paper investigates the finite-time robust control problem of a class of nonlinear time-delay systems with general form, and proposes some new delay-independent and delay-dependent conditions on the issue. First, by developing an equivalent form, the paper studies finite-time stabilization problem, and presents some delay-dependent stabilization results by constructing suitable Lyapunov functionals. Then, based on the stabilization results, we study the finite-time robust control problem for the systems, and give a robust control design procedure. Finally, the study of two illustrative examples shows that the results obtained of the paper work well in the finite-time stabilization and robust stabilization for the systems. It is shown that, by using the method in the paper, the obtained results do not contain delay terms, which can avoid solving nonlinear mixed matrix inequalities and reduce effectively computational burden. Moreover, different from existing finite-time results, the paper also presents delay-dependent sufficient conditions on the finite-time control problem for the systems.  相似文献   

20.
This paper investigates the problem of robust H fixed-order filtering for a class of linear parameter-varying (LPV) switched delay systems under asynchronous switching that the system parameter matrices and the time delays are dependent on the real-time measured parameters. The so-called asynchronous switching means that there are time delays between the switching of filters and the switching of system modes. By constructing the parameter-dependent and mode-dependent Lyapunov-Krasovskii functional which is allowed to increase during the running time of active subsystem with the mismatched filter, and using the mode-dependent average dwell time (MDADT) switching method, the sufficient conditions for exponential stability and satisfying a novel weighted H criterion are derived. As there exist couplings between Lyapunov-Krasovskii functional matrices and system parameter matrices, we utilize slack matrices to decouple them. Based on the above results, a suitable weighted H fixed-order filter can be obtained in the form of the parameter linear matrix inequalities (PLMIs). By virtue of approximate basis function and gridding technique, the design of weighted H fixed-order filter can be transformed into the solution of the finite dimensional LMIs. Finally, a numerical example is presented to verify both the effectiveness and the low conservatism of the parameter-dependent and mode-dependent fixed-order filtering method proposed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号