首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
The present paper deals with the pollen morphology of 10 species and 1 variety of Loxostemon in China. The pollen grains were all examined under light microscope.       The pollen grains of Loxostemon are subspheroidal, spheroidal or prolate, 18--33×11.8-28 μ in size, 3-colpate, colpi 15-21 μ long and 1-2 μ  wide. The exine is 1.5-3 μ thick with two indistinct or distinct layers.       All the pollen grains are generally reticulate under light microscope. They are distinctly or obscurely and finely reticulate.      L. axillus and L. repens are generally similar in gross morphology, but the pollen grains of these two species are different. The pollen grains of L. axillus are regularly polygonally reticulate, colpi are acute-ended and the exine is about 3 μ  thick, whereas those of L.repens are irregularly polygonally reticulate, colpi are enlarged at both ends and the exine is about 2.8 μ thick. L. incanus and L. stenolobus appear to have similar gross morphology, but the pollen grains of the former have exines with two distinct layers and a densely and finely reticulate ornamentation and those of the latter have exines with two indistinct layers and a flexuosely reticulate ornamentation.  相似文献   

2.
The present paper describes the pollen morphology of 30 species belonging to 7 genera of Plumbaginaceae from China.  The pollen grains were all examined under light microscope, and those of some species under scanning and transmission electron microscope.       The pollen grains of the family are subspheroidal, prolate or oblate, (37.5-74.5)× (40.4-81.9)μ in size, 3-colpate, rarely 4-6-colpate,  only pancolpate in  Ceratostigma willmottianum.  The exine 2-layered, 2.0-7.4μ thick, sexine thicker than nexine, verrucate, reticulate or coarsely reticulate.       On the basis of the morphology, two types of pollen grains are distinguished in the family:       (1)  The pollen grains are 3-(rarely 4-6 ) or pancolpate, the exine verrucate. They are found in the tribe Plumbagineae (inculuding the genera Ceratostigma, Plumbago and Plumbagella).       (2)  The pollen grains are all 3-colpate, the exine reticulate or coarsely reticulate. They are found in the tribe Staticeae (including the genera Acantholimon, Ikonnikovia, Goniolimon and Limonium ).  相似文献   

3.
 The pollen morphology of 11 species and 1 variety in the genus Lespedeza and its allied genera (Campylotropis, Kummerowia) from NE China was examined under light and scanning electron microscopes.      1.  Lespedeza Michx. (plate 1:1-6; 2:1-6; 3:1-6; 4:1-2)      Pollen grains prolate, rarely subprolate or spheroidal, elliptic or rarely suborbicular in equa- torial view, 3-lobed-rounded in polar view, tricolporate, colpus margins smooth or jagged.  Polar axis 20.7-33.1μm long, equatorial axis 15.4-20.9 μm long.  Exine reticulate or foveolate, lu- mina verrucose or smooth under SEM.      2.  Campylotropis Bge. (plate 4:3-4)      One species in NE China, C. macrocarpa (Bge.) Rehd.  Pollen grains prolate, elliptic in equatorial view, 3-lobed-rounded in polar view, 3-colporate, colpus linear, 25.1μm long, 1.79μm broad, colpus margins jagged, with a series of verrucae equal in size along one side visible under SEM.  Polar axis 19.7μm long, equatorial axis 14.6μm long.  Exine reticulate, lumina nearly rounded, verrucose at periphery under SEM.       3.  Kummerowia Schindl. (plate 4:5-6)       Pollen grains spheroidal, oblate or prolate, elliptic in equatorial view, obtuse-triangular in polar view, tricolporate, colups linear, 25.1μm long, 2.01μm  broad,  colpus margins sinuate. Polar axis 24.7-27.9μm long, equatorial axis 19.7-26.6μm long.  Exine reticulate or subreti- culate, lumina nearly rounded, with verrocae visible under SEM.       According to the pollen morphology of Lespedeza and its allied genera, the division of Lespedeza (s. lat.) into Lespedeza (S. str.), Campylotropis and Kummarowia by Schindler (1912) is reasonable.  The subdivision of Lespedeza (s. str.) into Sect.  Macrolespedeza and Sect. Lespe- deza by many botanists, and the treatment of Lespedeze juncea  (L. f.) Pers. var. inschanica Maxim. as an independent species (i.e. Lespedeza inschanics (Maxim). Schindl.) are also suppor- ted by the pollen morphology shown in the present work.  相似文献   

4.
The morphological characters in the genus Orobanche were evaluated from the taxonomic point of view.  The author finds that the plants of this genus are relatively similar to each other in respect to characters of vegetative organs, fruits and seeds.  But the differences in the floral structures can be served as a basis for delimitating infrageneric taxa.   The seed coat of 18 species and pollen grains of  6 species were also examined under scanning electron microscope (SEM). They seem to have little significance for distinguishing species.       The result supports G. Beck’s (1930) division of the genus Orobanche into 4 sections, of which 2 occur in China, based on the characters of the inflorescence, bracteoles and calyx. The author considers that some characters, such as anther hairy or not, upper lip of corolla entire or not, lower lip longer or shorter than the upper one, the state of corolla-tube inflec-  tion and the hair type of filaments and plants, are important in distinguishing Chinese species.  A key to the species of Orobanche in China is given.       This genus consists of about 100 species, and is mostly confined to Eurasia, with over 60  species found in Caucasus and Middle Asia of USSR, where may be the mordern  distribu-  tional  centre.        Orobanche L. in China is represented by 23 species, 3 varieties and l forma. As shown in  Table 1, most species (12 species) are found in Xinjiang, which clearly shows a close floristic  relationship between this region and Middle Asia of USSR.  6 species are endemic to China,  of which 4 are confined to the Hengduan Mountains  (Yangtze-Mekong-Salwin divide).        The relationships between this genus and related ones of Orobanchaceae are also discussed.  The author holds the following opinions: the genus Phelypaea Desf. should be considered as a   member of Orobanche L. Sect. Gymnocaulis G. Beck,  the monotypic genus,   Necranthus A.   Gilli endemic to Turkey, is allied with Orobanche L. Sect.  Orobanche, the monotypic genus,   Platypholis Maxim, endemic to Bonin Is. of Japan, is far from Orobanche L. in relation and   should be regarded as a separate genus.        The 11 OTU’s, including all the sections of Orobanche L. and 7 genera of Orobanchaceae,   and 15 morphological characters were used in the  numerical  taxonomic treatment  to  test  the   above-mentioned  suggestions.   After standardization of characters, the correlation matrices were   computerized.  The correlation matrices were made to test the various clustering methods.   At    last the UPGMA clustering method was chosen and its result is shown in a phenogram.  The   result of numerical analysis is basically in accordance with the suggestions.  相似文献   

5.
 We have described a new genus Taihangia, collected from, the south part of Taihang Mountain in northern China. At the same time, comparative studies on Taihangia with its related genera have been made in various fields including external morphology, anatomy of carpels, chromosome and pollen morphology by light, scanning and transmission electron microscope. In addition, isoperoxidases of two varietier were analysed by means of polya-crylamide gel slab electrophoresis. The preliminary results are as follows:       Morphology: The genus Taihangia is perennial and has simple leaves, occasionally with 1—2 very small reduced lobes on the upper part of petiole; flowers white, andromo- noecious and androdioecious, terminal, single or rarely 2 on a leafless scape; calyx and cpicalyx with 5 segments; petals 5; stamens numerous; pistils numerous, with pubescent styles, spirally inserted on the receptacle in bisexual flowers, but with less number of abortive and glabrous pistils in male flowers.       In comparison with the related genera such as Dryas, Geum, Coluria and Waldsteinia, the new genus has unisexual flowers and always herbaceous habit indicating its advanced feature but the genus has a primitive style with thin and short hairs as compared with the genus Dryas which has long, pinnately haired styles, a character greatly facilitamg anemo-choric dissemination. The styles of Taihangia are slender and differ from those of the ge-nus Geum which are articulate, with a persistent hooked rostrum, thus adapting to epizo-ochoric dissemination to a higher degree.       The anatomy of carpels shows the baral position of ovules in the genus Taihangia like those in other related genera such as Dryas, Geum, Acomastylis, Coluria and Waldsteinia. This suggests that the new genus and its related ones are in a common evolutionary line as compared with the other tribes which have a pendulous ovule and represent a separate evolutionary line in Rosaceae. Dorsal and ventral bundles in carpels through sections are free at the base. Neither fusion, nor reduction of dorsals and vertrals. are observed. This shows that the genus Taihangia is rather primitive.       Somatic chromosome: All the living plants, collected from both Honan and Hopei Provinces were examined. The results show that in these plants the chromosome number is 2n= 14, and thus the basic number of chromosome is x=7. Such a diploid genus is first found in both anemochoric and epizoochoric genera. Therefore, in this respect Taihangia is primitive as compared with herbaceous polyploid genus Geum and related ones.      Pollen: The stereostructure shown by scanning electron microscope reveals  that  the pollen grains of the genus Taihangia are ellipsoid and 3-colporate. There are two types of exine sculpture. One is rather shortly striate and it seems rugulate over the pollen surface; the other is long-striate. The genus Dryas differs in having only short and thick striae over the surface. The genus is similar to the genera Geum, Coluria and Waldsteinia in colpustype, but differs from them in that they all have long, parallel striae which are distributed along the meridional line.       In addition, under transmission electron microscope, the exine in the Taihangia and related genera Acomastylis, Geum, Coluria, Waldsteinia and Dryas has been shown to be typically differentiated into two distinct layers, nexine and sexine. The nexine, weakly statined, appears to consist of endoxine with no foot-layer, in which the columellae are fused, and which is thicker beneath the apertures. The sexine is 2-layered, consisting of columellae and tectum. Three patterns of tectum can be distinguished in the tribe Dryadeae: the first, in the genera Taihangia, Acomastylis, Geum, Coluria and Waldsteinia, is tectate-imperforate, with the sculpturing elements both acute and obtuse at the top and broad at the base; the second, in the genus Dryas, is semitectate, with the sculpturing elements shown in ultrathin sections rod-like and broader at the top than at the base or as broad at the top as at the base, and the third, tectate-perforate, with the sculpturing elements different in size. From the above results, the herbaceous groups and woody ones  have palynologically evolved in two distinct directions, and the genus Taihangia is related to other herbaceous genera such as Acomastylis, Geum, Coluria and Waldsteinia, as shown in the electron microphotographs of ultrathin sections. The genus Taihangia, however, is different from related herbaceous genera in that the pollen of Taihangia is dimorphic, i.e. in addition to the above pattern of pollen another one of the exine in Taihangia is rugulate, with the sculpturing elements shown in the ultrathin sections being obtuse or emarginate and nearly as broad at the top as at the base.      The interesting results obtained from the comparative analysis of morphology, ana- tomy of carpels, chromosome countings, microscopic and submicrosocopic structures of pollen may enable us to evaluate the systematic position of Taihangia and to throw a new light on evolution of the tribe Dryadeae. It is well known that the modes of dissemination of rosaceous fruits play an important role in the expansion and evolution of the family. The follicle is the most primitive and the plants with follicles, like the Spiraeoideae, are mostly woody and mesic, while the achene, drupe and pyrenarium are derived. In Rosoideae  having a achene is a common feature. Particularly in the tribe Dryadeae, which is distinguished from the other related tribes by having orthotropous ovules, the methods of dissemination of fruits have developed in three distinct specialized directions: anemochory with long, plumose styles (e.g. Dryas), formicochory or dispersed by ants or other insects, with the deciduous styles (e.g. Waldsteinia and Collria),and epizoochory with the upper deciduous stigmatic part and the lower persistent hooked rostrum, an  adhesive organ favouring  epizoochory dissemination (e. g. Geum and related taxa). Taihangia is a genus endemic to mesophytic forest area of northern China. Due to its narrow range and specific habit as well as pubescent styles, neither perfectly adapted to anemochory nor to epizoochory, the genus  Taihangia might be a direct progeny of the ancestry of anemochory. Maintaining the diploidy and having an ntermediate sculptural type of pollen, the new genus might probably represent a linkage between anemochory and zoochory (including epizoochory and dispersed by ants).       Experimental evidence from isoperoxidases shows the stable zymograms of root and roostoks. The anodal isozyme of T. rupestris var. rupestris may be divided into 6 bands: A, B, C, D, E, F, and T. rupestris var. ciliata into 4 bands: A, B, C, G. The two varietiesof the species share 3 bands: A, B, C. However, D, E and F bands are characteristic of var. rupestris and G band is limited to var. ciliata. As far as the available materials are concerned, the analysis of isoperoxidases supports the subdivision of the species into two varieties.  相似文献   

6.
我国悬钩子属植物的研究   总被引:1,自引:0,他引:1  
 The genus Rubus is one of the largest genera in the Rosaceae, consisting of more than 750 species in many parts of the world, of which 194 species have been recorded in China.      In the present paper the Rubus is understood in its broad sense, including all the blackberries, dewberries and raspberries, comprising the woody and herbaceous kinds. So it is botanically a polymorphic, variable and very complicated group of plants. The detailed analysis and investigation of the evolutionary trends of the main organs in this genus have indicated the passage from shrubs to herbs in an evolutionary line, although there is no obvious discontinuity of morphological characters in various taxa. From a phylogenetic point of view, the Sect. Idaeobatus Focke is the most primitive group, characterized by its shrub habit armed with sharp prickles, aciculae or setae, stipules attached to the petioles, flowers hermaphrodite and often in terminal or axill- ary inflorescences, very rarely solitary, druplets separated from receptacles. Whereas the herbaceous Sect.  Chamaemorus L. is the most advanced group, which is usually unarmed, rarely with aciculae or setae, stipules free, flowers dieocious, solitary, dru- plets adhering to the receptacles and with high  chromosome numbers  (2n = 56). Basing upon the evolutionary tendency of morphological  features,  chromosome nu- mbers of certain species recorded in literature and the distribution patterns of species, a new systematic arrangement of Chinese Rubus has been suggested by the present authors. Focke in his well-known monograph divided the species of Rubus into  12 subgenera, while in the Flora of China 8 sections of Focke were adapted, but some im- portant revisions have been made in some taxa and Sect. Dalibarda Focke has been reduced to Sect.  Cylactis Focke.  In addition, the arrangement of sections is presented in a reverse order to those of Focke’s system.  The species of Rubus in  China are classified into 8 sections with 24 subsections (tab. 3) as follows: 1. Sect. Idaeobatus, emend. Yü et Lu(11 subsect. 83 sp.); 2. Sect. Lampobatus Focke (1 sp.); 3. Sect. Rubus (1 sp.); 4. Sect. Malachobatus Focke, emend. Yü et Lu (13 subsect. 85 sp.); 5. Sect. Dalibardastrus (Focke)Yü et Lu (10 sp.); 6. Sect. Chaemaebatus Focke (5 sp.); 7. Sect. Cylactis Focke, emend. Yü et Lu (8 sp.); 8. Sect. Chamaemorus Focke (1 sp.).      In respect to the geographical distribution the genus Rubus occurs throughout the world as shown in tab. 2, particularly abundant in the Northern Hemisphere, while the greatest concentration of species appears in North America and E. Asia.  Of the more than 750 species in the world, 470 or more species (64%) distributed in North America.  It is clearly showm that the center of distribution lies in North America at present time.  There are about 200 species recorded in E. Asia, of which the species in China (194) amount to 97% of the total number. By analysis of the distribution of species in China the great majority of them inhabit the southern parts of the Yangtze River where exist the greatest number of species and endemics,  especially in south- western parts of China, namely Yunnan, Sichuan and Guizhou (tab. 3. 4.).  It is in- teresting to note that the centre of distribution of Rubus in China ranges From north- western Yunnan to south-western Sichuan (tab. 5), where the genus also reaches its highest morphological diversity.       In this region the characteristics of floristic elements of Rubus can be summarized as follows: it is very rich in composition, contaning 6 sections and 94 species, about 66% of the total number of Chinese species; there are also various complex groups, including primitive, intermediate and advanced taxa of phylogenetic importance; the proportion of endemic plants is rather high, reaching 61 species, up to 44% of the total endemics in China.  It is noteworthy to note that the most primitive Subsect. Thyrsidaei (Focke) Yü et Lu, consisting of 9 endemic species, distributed in southern slopes of the Mts. Qin Ling and Taihang Shan (Fig. 4). From the above facts we may concluded that the south-western part of China is now not only the center of distribu- tion and differentiation of Rubus in China, but it may also be the center of origin ofthis genus.  相似文献   

7.
The classical and numerical taxonomy, palynology and the geographical dis- tribution of the Genus Schizopepon are dealt with in the present paper.  Having comme- nted on various opinions regarding the systematic position of the genus, the present au- thors consider that C. Jeffrey’s treatment of Schizopepon as a new and monogeneric tri- be, Schizopeponeae, should be supported.      The gross morphological characters in the genus are assessed from the taxonomic point of view.  Some characters, such as stamens with an elongated connective or not, different insertions of ovules and various forms of ovaries and fruits, may be used for distinguishing subgenera.      The pollen grains of all the species were observed under light microscope (LM) and scanning electron microscope (SEM).  The results show that a strong differentiation has taken place in the pollen of the genus, and in consequence it may be regarded as an important basis for dividing subgenera and species. Especially it should be pointed out that degrees of development of colpi and positions of ora are positively correlated with the external characters used for distinguishing subgenera.      According to the morphological and palynological characters, the genus Schizopepon may be divided into three subgenera and eight species: 1. Subgenus Schizopepon: 5 spe- cies, S. bryoniaefolius Maxim., S. monoicus A. M. Lu et Z. Y. Zhang, S. dioicus Cogn., S. longipes Gagnep. and S. macranthus Hand.-Mazz.; 2. Subgenus Rhynchocarpos A. M. Lu et Z. Y. Zhang: 1 species, S. bomiensis A. M. Lu et Z. Y. Zhang; 3. Subgenus Neoschi- zopepon A. M. Lu et Z. Y. Zhang: 2 species, S. bicirrhosus (C. B. Clarke) C. Jeffrey and S. xizangensis A. M. Lu et Z. Y. Zhang.      The 8 OTU’s including all the species of this genus and 31 characters, of which 16 are morphological characters and 15 palynological characters, were used in the numerical taxonomic treatment.  After standardization of characters, the correlation and distance matrices were computed.  The correlation matrices are made to test the various clustering methods.  At last, the UPGMA clustering method was selected and its result is shown in the form of phenogram.  The result of numerical analysis is similar to that of the classical classification.      Schizopepon Maxim. is a genus of East Asia-Himalayan distribution. China has all 8 species and 2 varieties, of which 6 species are endemic. Based on the statistics of spedies number, the distribution centre of the genus is considered to be in the Hengduan Mountains (Yangtze-Mekong-Salwin water divides) and the adjacent areas of the southwest China.  相似文献   

8.
木兰科分类系统的初步研究   总被引:10,自引:0,他引:10  
A new system of classification of Magnoliaceae proposed.  This paper deals mainly with taxonomy and phytogeography of the family Magnoliaceae on the basis of external morphology, wood anatomy and palynology.  Different  authors have had different ideas about the delimitation of genera of this family, their controversy being carried on through more than one hundred years (Table I).  Since I have been engaged in the work of the Flora Reipublicae Popularis Sinicae, I have accumulated a considerable amount of information and material and have investigated the living plants at their natural localities, which enable me to find out the evolutionary tendencies and primitive morphological characters of various genera of the family.  According to the evolutionary tendencies of the characters and the geographical distribution of this family I propose a new system by dividing it into two subfamilies, Magnolioideae and Liriodendroideae Law (1979), two tribes, Magnolieae and Michelieae Law, four subtribes, Manglietiinae Law, Magnoliinae, Elmerrilliinae Law and Micheliinae, and fifteen genera (Fig. 1 ), a system which is different from those by J. D. Dandy (1964-1974) and the other authors.      The recent distribution and possible survival centre of Magnoliaceae. The members of Magnoliaceae are distributed chiefly in temperate and tropical zones of the Northern Hemisphere, ——Southeast Asia and southeast North America, but a few genera and species also occur in the Malay Archipelago and Brazil of the Southern Hemisphere. Forty species of 4 genera occur in America, among which one genus (Dugendiodendron) is endemic to the continent, while about 200 species of 14 genera occur in Southeast Asia, of which 12 genera are endemic.  In China there are about 110 species of 11 genera which mostly occur in Guangxi, Guangdong and Yunnan; 58 species and more than 9 genera occur in the mountainous districts of Yunnan.   Moreover,  one  genus (Manglietiastrum Law, 1979) and 19 species are endemic to this region.  The family in discussion is much limited to or interruptedly distributed in the mountainous regions of Guangxi, Guangdong and Yunnan.  The regions are found to have a great abundance of species, and the members of the relatively primitive taxa are also much more there than in the other regions of the world.      The major genera, Manglietia, Magnolia and Michelia, possess 160 out of a total of 240 species in the whole family.  Talauma has 40 species, while the other eleven genera each contain only 2 to 7 species, even with one monotypic genus.   These three major genera are sufficient for indicating the evolutionary tendency and geographical distribution of Magnoliaceae.  It is worthwhile discussing their morphological  characters  and distributional patterns as follows:      The members of Manglietia are all evergreen trees, with flowers terminal, anthers dehiscing introrsely, filaments very short and flat, ovules 4 or more per carpel.  This is considered as the most primitive genus in subtribe Manglietiinae.  Eighteen out of a total  of 35 species of the genus are distributed in the western, southwest to southeast Yunnan. Very primitive species, such as Manglietia hookeri, M. insignis  and M. mega- phylla, M. grandis, also occur in this region. They are distributed from Yunnan eastwards to Zhejiang and Fujian through central China, south China, with only one species (Manglietia microtricha) of the genus westwards to Xizang.  There are several species distributing southwards from northeast India to the Malay Archipelago (Fig. 7).      The members of Magnolia are evergreen and deciduous trees or shrubs, with flowers terminal, anthers dehiscing introrsely or laterally, ovules 2 per carpel, stipule adnate to the petiole.  The genus Magnolia is the most primitive in the subtribe Magnoliinae and is the largest genus of the family Magnoliaceae. Its deciduous species are distributed from Yunnan north-eastwards to Korea and Japan (Kurile N. 46’) through Central China, North China and westwards to Burma, the eastern Himalayas  and northeast India.  The evergreen species are distributed from northeast  Yunnan  (China)  to  the Malay Archipelago.  In China there are 23 species, of which 15 seem to be very primi- tive, e.g. Magnolia henryi, M. delavayi, M. officinalis and M. rostrata, which occur in Guangxi, Guangdong and Yunnan.      The members of Michelia are evergreen trees or shrubs, with flowers axillary, an- thers dehiscing laterally or sublaterally, gynoecium stipitate, carpels numerous or few. Michelia is considered to be the most primitive in the subtribe Micheliinae, and is to the second largest genus of the family.  About 23 out of a total of 50 species of this genus are very primitive, e.g. Michelia sphaerantha, M. lacei, M. champaca,  and  M. flavidiflora, which occur in Guangdong, Guangxi and Yunnan (the distributional center of the family under discussion)  and extend eastwards to Taiwan  of  China, southern Japan through central China, southwards to the Malay Archipelago through Indo-China. westwards to Xizang of China, and south-westwards to India and Sri Lanka (Fig. 7).      The members of Magnoliaceae are concentrated in Guangxi, Guangdong and Yunnan and radiate from there.  The farther away from the centre, the less members we are able to find, but the more advanced they are in morphology.  In this old geographical centre there are more primitive species, more  endemics  and  more monotypic genera. Thus it is reasonable to assume that the region of Guangxi, Guangdong and Yunnan, China, is not only the centre of recent distribution, but also the chief survival centreof Magnoliaceae in the world.  相似文献   

9.
10.
海菜花属的分类、地理分布和系统发育   总被引:1,自引:0,他引:1  
 The genus Ottelia is one of the great genera of Hydrocharidaceae.  About 25 spe- cies distributed in the Palaeotropics, extending from Africa through India and SE. Asia to Korea and Japan, Australia and New Caledonia, 1 species in Brazil; centres of specific devolopment are found in Central Africa and SE Asia.      The present study is mainly based on the materials collected during the field ex- plorations in the lakes of Yunnan and observations on the structure of the spathe and flowers, the variation of leaf of the plants cultivated in Kunming Bot. Garden. Instead of the wings of the spathe used by Dandy, by the characters such as uni-or bisexual flowers, this genus is divided into two subgenera, which by the number of the flowers in spathe and the number of the carpus in ovary again subdivided into 4 sections.  They are as the following:      A. Subg. Ottelia.  Flowers bisexual.      Sect. 1. Ottelia.  Spathe with 1 flower; ovary with 6(—9) carpus.      Sect. 2. Oligolobos (Gagnep.) Dandy. Spathe with many flowers; ovary with 3 car- pus.      B. Subg. Boottia (Wall.) Dandy.  Flowers unisexual; the male spathe with 1-many flowers, the female spathe with many flowers.      Sect. 3. Boottia.  The male spathe with 1 flower; ovary with 9(—15) carpus.      Sect. 4.  Xystrolobos (Gagnep.) H. Li.  The female spathe with (2-) many flow- ers; ovary with 3 or 9 carpus.      The Chinense species of ottelia is in great need for revision.  All of the species in China previousely described under Ottelia Pers, Boottia Wall., Oligolobos Gagnep, and Xystrolobos Gagen. are here combined into 3 species.  They are O. alismoides, O. cor- data, O. acuminata with 4 variaties.      After a study of the geographic distribution and infer relation-ships among the floristic elements it has been proved that Ottelia is certainly an ancient genus, and the primitive types came into being and widely dispersed before the separation of Laurasia from Gondwana.      During a considerable period of time the elements of the genus Ottelia in fresh- water environment of different continents have been separately differentiated and evolv- ed into more or less derived types.  The structure of flowers in all of the asian species shows the following evolutionary tendenoes: 1. In this genus the plants with unisexual flowers have evolved from plants with bisexual flower; 2.  In the groups with bisexual or unisexual flowers the number of stamens and styles reduced to 3-merous, but the number of flowers in spathe increased. So that the subgenus Ottelia is more primitive than the subgenus Bottia; While in the subgenus Ottelia O. alismoides is a more primi- tive than O. balansae and in the subgenus Boottia O. cordata is the most primitive, butO. alata seems to be the most advanced.  相似文献   

11.
本文对金缕梅科Hamamlidaceae蜡瓣花属Corylopsis 11种花粉进行光学显微镜和扫描电镜的观察研究。本属花粉除Corylopsis sinensis少量花粉具4沟外均为三沟类型。外壁均具网状纹饰,网眼形状大小略有差异,花粉粒大小虽有些变化,但其它特征均较一致,故在植物分类上本属是相当自然的一个类群。  相似文献   

12.
本文用光学显微镜和扫描电镜对国产44种2变种蓼属植物的花粉形态进行了观察。除了前人报道的31种外,其中15种为首次报道。本属花粉形态多类型,有球形、近球形、近扁球形、近长球形及长球形;从萌发孔来看,有三沟型、三孔沟型、散沟型及散孔形:外壁纹饰有颗粒-穿孔、微刺-穿孔、微刺-凹穴、细网状、皱块状及粗网状。根据这些特征将花粉划分为10种类型,其中西伯利亚蓼型(Sibir-icum-type)为本文首次提出。文中对本属的分类问题进行了探讨,不支持Steward(1930)将本属划分为8个组的意见,而认为应将本属划分为11个组。  相似文献   

13.
本文报道在光学显微镜与扫描电镜下,对中国姜科Zingiberaceae中的2亚科(姜亚科、     闭鞘姜亚科)、3族、18属、89种、3变种植物花粉形态的观察结果。根据萌发孔的有无,将本     科的植物花粉分成两大类型,无萌发孔型和具萌发孔型。根据花粉粒形状、大小及萌发孔的类     型和外壁表面纹饰的不同,在两大类型中又区分为6亚型和2组。在无萌发孔类型中有:光     滑亚型、具刺亚型(内分短刺组和长刺组)、具条纹亚型和具脑皱状-负网状亚型,在具萌发孔类     型中有具沟-孔混合亚型及具散孔亚型。本文从花粉学的观点,对科内某些分类群的划分进行了讨论。  相似文献   

14.
独叶草花粉形态的研究及其在分类上的意义   总被引:1,自引:0,他引:1  
 独叶草  (Kingdonia uniflora Balfour f.et W.W.Smith)  为我国特有植物,     由于它的开放的二叉分枝叶脉,引起了植物学家的很大兴趣和广泛注意,并从     各个方面对它进行了研究。关于它的花粉形态,除Forster(1961)曾有过简短     描述外,国内外都未研究过。本文对它的花粉形态进行了系统的研究,通过光学     显微镜、扫描电镜和透射电镜观察了它的外部形态和外壁结构。  并讨论了有关    分类问题。  相似文献   

15.
苹果属花粉形态特征及其分类学和进化意义   总被引:1,自引:0,他引:1  
 本文用扫描电镜观察了苹果属Malus 26种及5个杂种的花粉形态,描述了外壁纹饰形态特征的 变化类型,并对其进化趋势作了推论,指出外壁纹饰类型具属内分组意义。苹果属花粉在形状。大小、沟孔位置及数量、外壁纹饰等方面都十分相似。外壁纹饰的主要演化趋势可能是:由密的细条纹型到具有穿孔的、较少条纹型。杂种的外壁纹饰对于判断亲本种的关系有一定意义,属内种间的杂合导致了多倍体种、新变种、栽培种的大量出现,甚至是新种产生的方式。  相似文献   

16.
 本文利用光学显微镜和电子显微镜对我国栎属Quercus 30多种花粉进行比较深入的研  究,试图通过花粉形态的研究为栎属的植物分类和化石鉴定提供参考依据。  相似文献   

17.
中国车前属种子形态及其分类学意义   总被引:1,自引:0,他引:1  
本文研究了中国车前科Plantaginaceae车前属plantago2亚属8组17种及1变种植物的种子, 在扫描电子显微镜下的形态及亚显微结构(种皮纹饰).结果表明种子形态有四个类型:1,多角形类型;2.舟形类型;3.卵形类型;4.矩圆形类型。各个种的种子形态和种皮纹饰有着相当明显的区别。新种plantago densiflorus的建立应用了种子形态和种皮纹饰这一特征。车前种子形态分类与pilger用植物其他形态特征建立的车前属分类系统是一致的,因此,笔者支持Pilger的车前属分类系统。  相似文献   

18.
本文借助光学显微镜和扫描电镜,对豹子花属Nomocharis 6种植物和百合属Lilium 4   种植物的花粉形态与外部特征作了较系统的比较研究,其结果如下:  1.豹子花属植物花粉的   萌发孔均为单沟(远极)型,根据其外壁结构及表面纹饰的特点,可分为基柱网纹型和网纹   型,结合外部形态特征推断,可能存在由基柱网纹→网纹的进化趋势。 2.百合属植物花粉   的萌发孔多为单沟(远极)型,稀为2一3孔型,然而,其中外部形态极为相近的小百合集合群与   尖被百合在花粉形态上表现出较大的差异,这一事实为研究百合科花粉的演化提供了线索。豹   子花属与百合属花粉虽在表面纹饰上存在区别,但从外部形态上,该属的一些种类与百合属极  为相近,反映出二属之间存在着较为紧密的亲缘关系。  相似文献   

19.
紫草科微孔草属及其近缘属花粉形态的研究   总被引:1,自引:0,他引:1  
 本文用光学显微镜和扫描电镜观察了微孔草属(Microula Benth.)6组16种及其相关的3属6 种植物的花粉,并对微孔草属2种和齿缘草属(Eritrichium Schrad.)2种花粉做了花粉壁超微结构的 研究。微孔草属及其相关的3属花粉为哑铃形,花粉体积很小,最大的为12.18×7.13μm,最小的只 有6.36×3.36μm,具相间排列的三孔沟和三假沟。但他们在赤道部位的缢缩程度、萌发孔特征、表 面纹饰及超微结构有明显的不同。从花粉形态看,微孔草属较原始,且与锚刺果属(Actinocarya Benth.)有较密切关系;齿缘草属具双内孔或单内孔且为异极,为进化类型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号