首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the adaptive sliding mode control issue for switched nonlinear systems with matched and mismatched uncertainties is addressed, where the persistent dwell-time switching rule is introduced to describe the switching of parameters. Besides, considering the case that the upper bound of the matched uncertainty is unknown, the purpose of this paper is to utilize an adaptive control method to estimate its upper bound parameters. To begin with, a linear sliding surface is constructed, and then the reduced-order sliding mode dynamics can be obtained through a reduced-order method. Next, sufficient conditions can be derived based on the Lyapunov stability and the persistent dwell-time switching analysis techniques ensuring that the reduced-order sliding mode dynamics is globally uniformly exponentially stable. Moreover, a switched adaptive sliding mode control law is designed, which can not only ensure the reachability of the sliding surface but also estimate the upper bound parameters of the matched uncertainty. Finally, a numerical example and a circuit model are introduced to verify the effectiveness of the proposed method.  相似文献   

2.
In this article, the fault-tolerant control is investigated for the spacecraft attitude control system described by a linearized model with Markovian switching. First, the evolution of sudden failures of the spacecraft’s actuators is described by a Markov process. Then, the mathematical model of the spacecraft attitude control system with the Markov jump characteristic fault is established. Taking the uncertainty of the system model and external interference into consideration, a fault-tolerant control scheme is proposed for the established spacecraft attitude control system with the Markov jump characteristic fault by using the sliding mode control technique. Compared with some existing sliding mode controller design methods, the proposed method requires a less total number of LMIs to be solved. The stability and reachability of the resulting closed-loop system under the presented sliding mode control scheme are proven by applying the Lyapunov stability theory. Finally, some simulation results are provided to show the effectiveness and advantages of the proposed control method for spacecraft attitude control.  相似文献   

3.
The finite-time stochastic boundedness (FTSB) via the sliding mode control (SMC) approach is analyzed for Markovian jumping systems (MJSs) with time-delays. First, an integral switching surface is constructed. And to make sure the reachability of the sliding mode surface in a finite-time, an SMC law is designed. In addition, the delay-dependent criteria for FTSB are obtained over the reaching phase and the sliding motion phase. Furthermore, in line with linear matrix inequalities (LMIs), sufficient conditions are provided to guarantee the FTSB of systems over the whole finite-time interval. Lastly, an example is given to indicate the validity of the proposed approach.  相似文献   

4.
In this study, an adaptive fractional order sliding mode controller with a neural estimator is proposed for a class of systems with nonlinear disturbances. Compared with traditional sliding mode controller, the new proposed fractional order sliding mode controller contains a fractional order term in the sliding surface. The fractional order sliding surface is used in adaptive laws which are derived in the framework of Lyapunov stability theory. The bound of the disturbances is estimated by a radial basis function neural network to relax the requirement of disturbance bound. To investigate the effectiveness of the proposed adaptive neural fractional order sliding mode controller, the methodology is applied to a Z-axis Micro-Electro-Mechanical System (MEMS) gyroscope to control the vibrating dynamics of the proof mass. Simulation results demonstrate that the proposed control system can improve tracking performance as well as parameter identification performance.  相似文献   

5.
This paper deals with the sliding mode control problem for semi-Markovian jump systems with state saturation, in which the controller may not be synchronized with the considered systems. A mode-detector is introduced to estimate the unavailable system mode, based on which an asynchronous sliding mode controller is designed. Then, both the μ-exponential mean-square stability and the reachability of sliding surface are analyzed. Furthermore, a solving algorithm is given to acquire the feasible controller gains. Finally, the proposed asynchronous sliding mode control approach under state-saturation is illustrated via simulation results.  相似文献   

6.
This paper considers the problem of sliding mode control for discrete-time stochastic systems with parameter uncertainties and state-dependent noise perturbation. An integral-like sliding surface is chosen and a discrete-time sliding mode controller is designed. The key feature in this work is that both the reachability of the quasi-sliding mode and the stability of system states are simultaneously analyzed, due to the existence of state-dependent noise perturbation. By utilizing an Lyapunov function involving system states and sliding mode variables, the sufficient condition for reachability is obtained. Finally, numerical simulation results are provided.  相似文献   

7.
This article is dedicated to the issue of asynchronous adaptive observer-based sliding mode control for a class of nonlinear stochastic switching systems with Markovian switching. The system under examination is subject to matched uncertainties, external disturbances, and quantized outputs and is described by a TS fuzzy stochastic switching model with a Markovian process. A quantized sliding mode observer is designed, as are two modes-dependent fuzzy switching surfaces for the error and estimated systems, based on a mode dependent logarithmic quantizer. The Lyapunov approach is employed to establish sufficient conditions for sliding mode dynamics to be robust mean square stable with extended dissipativity. Moreover, with the decoupling matrix procedure, a new linear matrix inequality-based criterion is investigated to synthesize the controller and observer gains. The adaptive control technique is used to synthesize asynchronous sliding mode controllers for error and SMO systems, respectively, so as to ensure that the pre-designed sliding surfaces can be reached, and the closed-loop system can perform robustly despite uncertainties and signal quantization error.Finally, simulation results on a one-link arm robot system are provided to show potential applications as well as validate the effectiveness of the proposed scheme.  相似文献   

8.
This paper addresses the problem of robust integrated fault estimation (FE) and fault-tolerant control (FTC) for a class of discrete-time networked Takagi–Sugeno (T–S) fuzzy systems with two-channel event-triggered schemes, input quantization and incomplete measurements. The incomplete information under consideration includes randomly occurring sensor saturation and randomly occurring quantization. In order to save the limited networked resources, this paper firstly proposed a novel dynamic event-triggered scheme on the sensor side and a static one on the controller side. Secondly, an event-triggered FE observer for the T–S fuzzy model is designed to estimate actuator faults and system states, simultaneously. Then, a specified discrete sliding surface in the state-estimation space is constructed. By using time-delay analysis technique and considering the effects of event-triggered scheme, quantization, networked conditions, actuator fault and external disturbance, the sliding mode dynamics and error dynamics are unified into a new networked time-delay model. Based on this model, sufficient conditions are established such that the resulting augmented fuzzy system is stochastically stable with a prescribed H performance level with a single-step linear matrix inequality (LMI) formulation. Furthermore, an observer-based sliding mode controller for reaching motion is synthesized to guarantee the reachability of the sliding surface. Finally, a single-link flexible manipulator example is present to illustrate the effectiveness of the proposed method.  相似文献   

9.
This paper focuses on the stabilization problem for a class of Markovian jumping systems (MJSs) subject to intermittent denial-of-service (IDoS) attacks by synthesizing the sliding mode control (SMC) and the transition rate matrix (TRM). The existing conditions for the transition rates are firstly established to ensure the exponential mean-square stability of the unforced uncertain MJSs. And then, a co-design scheme for both the sliding mode controller and TRM is synthesized to achieve the exponential mean-square stability of the closed-loop system under IDoS, in which a switching estimator is utilized to estimate the unmeasurable system state. By introducing a novel Lyapunov function, both the reachability and the stability of sliding mode dynamics are detailedly analyzed, and an iterative optimization algorithm is given for solving the corresponding sufficient conditions. Finally, the proposed co-design SMC strategy is illustrated via the simulation examples.  相似文献   

10.
This study is concerned with the event-triggered sliding mode control problem for a class of cyber-physical switched systems, in which the Denial-of-Service (DoS) attacks may randomly occur according to the Bernoulli distribution. A key issue is how to design the output feedback sliding mode control (SMC) law for guaranteeing the dynamical performance of the closed-loop system under DoS attacks. To this end, an event-triggered mechanism is firstly introduced to reduce the communication load, under which the measurement signal is transmitted only when a certain triggering condition is satisfied. An usable output signal for the controller is constructed to compensate the effect of unmeasured states and DoS attacks. And then, a dynamic output feedback sliding mode controller is designed by means of the attack probability and the compensated output signals. Both the reachability and the mean-square exponential stability of sliding mode dynamics are investigated and the corresponding sufficient conditions are obtained. Finally, some numerical simulation results are provided.  相似文献   

11.
This paper utilizes the sliding mode approach to tackle the issue of adaptive control for uncertain switched systems with time-varying delay and actuator faults. Firstly, a kind of mathematical model of switched time-varying delay systems under sudden actuator faults is defined. Then, a linear sliding manifold is constructed, followed by some adequate conditions for exponential stability of the switched systems running on the sliding phase. Furthermore, an adaptive fault-tolerant controller for handling the actuator degradation is designed and the reachability of the established sliding manifold is proved. At last, a series of simulation examples are provided to demonstrate the efficiency of the proposed solution.  相似文献   

12.
In this paper, the observer-based sliding mode control (SMC) problem is investigated for a class of uncertain nonlinear neutral delay systems. A new robust stability condition is proposed first for the sliding mode dynamics, then a sliding mode observer is designed, based on which an observer-based controller is synthesized by using the SMC theory combined with the reaching law technique. Then, a sufficient condition of the asymptotic stability is proposed in terms of linear matrix inequality (LMI) for the overall closed-loop system composed of the observer dynamics and the state estimation error dynamics. Furthermore, the reachability problem is also discussed. It is shown that the proposed SMC scheme guarantees the reachability of the sliding surfaces defined in both the state estimate space and the state estimation error space, respectively. Finally, a numerical example is given to illustrate the feasibility of the proposed design scheme.  相似文献   

13.
This paper investigates the design problem of asynchronous output feedback controller via sliding mode for a class of discrete-time fuzzy Markovian jump systems. Considering the non-synchronization phenomenon between the Markovian jump systems and the sliding controller, an asynchronous control method with a stochastic variable is adopted to describe the connections of the systems and controller. On the other hand, not full of states are accessible for the controller since it is impossible or very expensive to estimate all of states, while the output information can be acquired to the controller all the time. Based on the above aspects, the asynchronous output feedback controller via sliding mode for fuzzy Markovian jump systems is investigated to ensure the sliding mode dynamics to be stochastically stable, besides, several sufficient conditions are given to find a set of feasible solutions of the controller parameters. The asynchronous sliding mode control law is synthesized to guarantee the reachability of the trajectories of the closed-loop systems. Finally, a simulation example is to verify the effectiveness of the control strategy.  相似文献   

14.
This paper focuses on the problem of chaos control for the permanent magnet synchronous motor with chaotic oscillation, unknown dynamics and time-varying delay by using adaptive sliding mode control based on dynamic surface control. To reveal the mechanism of motor system and facilitate controller design, the dynamic behavior of the system is investigated. Nonlinear items of system model, upper bounds of time delays and their derivatives are taken as unknown in the overall process. A RBF neural network with an adaptive law, which eliminates restrictions on accurate model and parameters, is employed to cope with unknown dynamics. In order to solve issues such as chaotic oscillation, ‘explosion of complexity’ of backstepping, and chattering associated with sliding mode control, a sliding mode controller is developed within the framework of dynamic surface control by the hybrid of adaptive technology and RBF neural network. In addition, an appropriate Lyapunov function is employed to demonstrate the system stability. Finally, the feasibility of the proposed scheme is testified by simulation.  相似文献   

15.
This paper is concerned with the security control problem for a class of Markov jump systems subject to false data injection attack and incomplete transition rates. An on-line estimation strategy is provided for the time-variant and unknown cyber-attack modes. And then, an adaptive sliding mode controller is synthesized with different robust terms for different modes to guarantee the reachability of the specified sliding surface. Moreover, the sufficient conditions for the stability of the closed-loop systems are derived. Finally, it is shown from simulation results that the effect of both false data injection attack and incomplete TRs can be effectively attenuated by the present adaptive SMC method.  相似文献   

16.
Previously proposed adaptive fuzzy sliding mode control (AFSMC) and adaptive fuzzy sliding mode observer (AFSMO) methods are mixed and extended for the case of affine systems in which the input gain matrix is state-dependent, non-diagonal and non-positive definite. The proposed Extended AFSMCO (E-AFSMCO) method is then applied for position control of a Stewart Manipulator (SM), whose parameters are strongly state-dependent and complex and not suitable for practical control purposes. A robust observer-based control method which can work with a simplified model of the plant, and at the same time can preserve the stability and performance of the overall complex system is of great need. In this study, the SM dynamic model is simplified by removing the dynamic effects of the legs and the neglected terms are considered as un-modeled dynamics, for which the upper bound of the uncertainty is progressively estimated using the proposed adaptation rules. The final controller is comprised of a fuzzy controller in parallel with a robust switching controller. The second Lyapunov theorem is used to prove the closed-loop asymptotic stability. The proposed E-AFSMCO method is verified numerically and experimentally, depicting the effectiveness of the method for real-time industrial applications.  相似文献   

17.
This paper investigates the frequency change problem of hydraulic turbine regulating system based on terminal sliding mode control method. By introducing a novel terminal sliding mode surface, a global fast terminal sliding mode controller is designed for the closed loop. This controller eliminates the slow convergence problem which arises in the terminal sliding mode control when the error signal is not near the equilibrium. Meanwhile, following consideration of the error caused by the actuator dead zone, an adaptive RBF estimator based on sliding mode surface is proposed. Through the dead zone error estimation for feed-forward compensation, the composite terminal sliding mode controller has been verified to possess an excellent performance without sacrificing disturbance rejection robustness and stability. Simulations have been carried out to validate the superiority of our proposed methods in comparison with other two other kinds of sliding mode control methods and the commonly used PID and FOPID controller. It is shown that the simulation results are in good agreement with the theoretical analysis.  相似文献   

18.
This paper considers the control problem of spacecraft line-of-sight (LOS) relative motion with thrust saturation in the presence of unmodeled dynamics, external disturbance and unknown mass property. By using skew-symmetric property, reference trajectory generator and anti-windup technique, a novel passivity-based adaptive sliding mode control (SMC) scheme is proposed without prior knowledge of uncertainty/disturbance bound. Within the Lyapunov framework, the establishment of a real sliding mode (which induces the practical stability of closed-loop error system) is validated. The main contributions are that a new control gain adaptive algorithm is adopted to attenuate the overestimation of switching gain and a differentiable projection-based parameter adaptive algorithm is proposed to force the mass approximator to remain in a desired domain, then the adaptive control law is modified by the reference trajectory generator and anti-windup technique to compensate for the effect of thrust saturation. Finally, simulations are conducted to show the fine performance of proposed control scheme.  相似文献   

19.
In this work, the problem of non-fragile sliding mode control is investigated for a class of uncertain switched systems with state unavailable. First, a non-fragile sliding mode observer is constructed to estimate the unmeasured state. And then, a state-estimate-based sliding mode controller is designed, in which a weighted sum approach of the input matrices is utilized to obtain a common sliding surface. It is shown that the reachability of the specified sliding surface can be ensured by the present sliding mode controller. Moreover, the exponential stability of the sliding mode dynamics is analyzed by adopting the average dwell time method. Finally, a numerical simulation is given to demonstrate the effectiveness of the results.  相似文献   

20.
In this paper, the stabilization is studied for a complex dynamic model which involves nonlinearities, uncertainty, and Lévy noises. This paper also discusses the controller discretization and presents a new algorithm to obtain the upper bound for the sample interval through which the exponential stability of the discrete system can still be guaranteed. Firstly, an integral sliding surface is designed to obtain the sliding mode dynamics for the considered stochastic Lévy process. By using Lyapunov theory, generalized Itô formula and some inequality techniques, the exponential stability is proved in the sense of mean square for sliding mode dynamics. The reachability of the sliding mode surface is also ensured by designing a sliding mode control law. Secondly, the continuous-time controller is discretized from the point of control cost, and the squared difference is analyzed for the states before and after the discretization. Different from those classical stochastic differential equations driven by Brownian motions, the noise is supposed to be Lévy type and the squared difference is analyzed in different cases. Furthermore, we obtain the largest sampling interval through which the discretized controller can still stabilize the Lévy process driven stochastic system. Finally, a simulation for a drill bit system is given to demonstrate the results under the algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号