首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Experimental study on homogeneous charge compression ignition (HCCI) combustion process was carried out on a single-cylinder direct injection diesel engine fueled with dimethyl ether(DME). The influence of inert gas CO2 on the ignition and combustion process was investigated. The research results indicate that because of the high cetanc number of DME, the stable HCCI operating range is quite narrow while the engine has a high compression ratio. The HCCI operating range can be largely extended when the inert gas is inducted into the charging air. HCCI combustion of DME presents remarkable characteristic of two-stage combustion process. As the concentration of inert gas increases, the ignition timing of the first combustion stage delays,the peak heat release rate decreases, and the combustion duration extends. Inducting inert gas into charging air cannot make the combustion and heat release of DME occur at a perfect crank angle position. Therefore, to obtain HCCI operation for the fuel with high cetane number,other methods such as reducing engine compression ratio should be adopted. Emission results show that under HCCI operation, a nearly zero NOx emission can be obtained with no smoke emissions. But the HC and CO emissions are high, and beth rise with the increase of the concentration of inert gases.  相似文献   

2.
本文介绍了汽油机燃烧过程仿真模拟的类型,建立了汽油机燃烧的准维模型。编制了基于VisualBasic的数值模拟程序,并利用该程序计算了某汽油机的燃烧过程。  相似文献   

3.
Effects of exhaust gas recirculation ( EGR) on homogeneous charge combustion of n-heptane was studied through simulation and experiment. Experiments were carried out in a single cylinder, four-stroke, air cooled engine and a single cylinder, two-stroke, water cooled engine. In the four-stroke engine, experiments of the effects of EGR were examined using heated N2 addition as a surrogate for external EGR and modifying engine to increase internal EGR. The ignition timing was sensitive to EGR due to thermal and chemical effects. EGR or extra air is a key factor in eliminating knock during mid-load conditions. For higher load operation the only way to avoid knock is to control reaction timing through the use of spark ignition. Experimental and modeling results from the twostroke engine show that auto-ignition can be avoided by increasing the engine speed. The twostroke engine experiments indicate that high levels of internal EGR can enable spark ignition at lean conditions. At higher load conditions, increasing the engine speed is an effective method to control transition from homogeneous charge compression ignition ( HCCI) operation to non-HCCI operation and successful spark ignition of a highly dilute mixture can avoid serious knock.  相似文献   

4.
The negative valve overlap (NVO) strategy of HCCI operation was experimentally investigated on a gasoline HCCI engine operated with variable valve timing in association with the addition of diesel fuel. The experimental results show that, by using gasoline and diesel blended fuels, the required NVO interval for suitable HCCI combustion under a given engine speed and a moderate compression ratio condition could be reduced, and the HCCI combustion region was extended remarkably without substantial increase in NO, , emissions under a given inlet and exhaust valve timing due to the improvement of charge ignitability. In addition, the possible scale of NVO was extended. A substantial increase in the lean limit of excess air ratio and the upper limit of load range can be achieved because of higher volumetric efficiency, resulting from the decrease in the required NVO and the presence of less residual gases in cylinder.  相似文献   

5.
The negative valve overlap (NVO) strategy of HCCI operation was experimentally investigated on a gasoline HCCI engine operated with variable valve timing in association with the addition of diesel fuel. The experimental results show that, by using gasoline and diesel blended fuels, the required NVO interval for suitable HCCI combustion under a given engine speed and a moderate compression ratio condition could be reduced, and the HCCI combustion region was extended remarkably without substantial increase in NOx emissions under a given inlet and exhaust valve timing due to the improvement of charge ignitability. In addition, the possible scale of NVO was extended. A substantial increase in the lean limit of excess air ratio and the upper limit of load range can be achieved because of higher volumetric efficiency, resulting from the decrease in the required NVO and the presence of less residual gases in cylinder.  相似文献   

6.
应用Chemkin化学动力学软件包中的Senkin模块模拟了正庚烷在多孔介质发动机中的燃烧过程.通过修改Senkin程序,结合了Woschni传热模型和多孔介质换热模型,并在正庚烷详细氧化机理中加入氮氧化物的生成机理,将此程序纳入发动机燃烧的零维单区模型.对多种工况参数进行计算,讨论了运行参数对发动机性能的影响.当进气温度、压缩比增大,或过量空气系数降低时,多孔介质发动机着火时刻会明显提前.结果表明:多孔介质对混合气具有预热作用可强化发动机的点火燃烧,多孔介质的初始温度是决定压燃点火的决定性因素.  相似文献   

7.
针对现场固定空燃比燃烧导致无法根据波动燃气热值匹配最佳助燃空气,使热风炉热损失增加;残氧检测仪直接检测热风炉烟道残氧量,将导致氧化锆损耗快、高炉煤气费用计量单一等问题。针对以上问题设计一种残氧燃气分析系统,该系统并行于热风炉控制系统的前馈控制,将少量高炉煤气、空气先通入该系统进行燃烧并调整自身空燃比,得到最佳空燃比作用于热风炉控制系统并对并行系统残氧含量、高炉煤气热值进行数值模拟和相关性分析。通过改进PSO算法优化RBF神经网络预测方法对稳定运行系统建立模型,预测煤气热值作为优化热风炉空燃比,评价煤气质量、费用计量的有效参考条件。经实验仿真测试,该系统可有效提高空燃比修正精度,延长氧化锆使用寿命,减少热风炉热损失。  相似文献   

8.
The flame structure of gasoline engine is complicated and has the characteristic of fractal geometry. A fractal combustion model was used to simulate the engine working cycle. Based on this model, the fractal dimension and laminar flame surface area of turbulent premixed flames were studied under different working conditions. The experimental system mainly includes an optical engine and a set of photography equipment used to shoot the images of turbulent flame of spark-ignition engine. The difference box-counting method was used to process 2D combustion images. In contrast to the experimental results, the computational results show that the fractal combustion model is an effective method of simulating the engine combustion process. The study provides a better understanding for flame structure and its propagation.  相似文献   

9.
This work investigates the effects of exhaust gas recirculation (EGR) and operation parameters including engine speed, equivalence ratio, coolant-out temperature, and intake charge temperature on the basic characteristics of a single-cylinder homogeneous charge compression ignition (HCCI) engine powered with reformulated iso-octane fuels. The running range of iso-octane HCCI engine can be expanded to lower temperature and more load by adding di-tertiary butyl peroxide (DTBP) in the fuel. The combustion timing advances with the increase of DTBP concentrations, coolant temperature and equivalence ratio. The effects of EGR on the combustion and emissions are remarkable when the EGR rate is higher than 25%, and the combustion phase is sharply postponed and the UHC and CO emissions deteriorate. The intake charge temperature has a moderate effect on combustion and emissions when it is lower than 35°C; but the combustion timing advances, the combustion duration shortens, and sometimes it leads to knock combustion when the intake charge temperature increases to above 35°C.  相似文献   

10.
In order to predict and improve the performance of natural gas/diesel dual fuel engine (DFE), a combustion rate model based on forward neural network was built to study the combustion process of the DFE. The effect of the operating parameters on combustion rate was also studied by means of this model. The study showed that the predicted results were good agreement with the experimental data. It was proved that the developed combustion rate model could be used to successfully predict and optimize the combustion process of dual fuel engine. Project supported by National Lab. for Automotive Engine and Safety, Tsinghua University, China  相似文献   

11.
INTRODUCTION In-cylinder flow characteristics during fuel in-jection and subsequent interactions with fuel sprays and combustion are important effect on engine per-formance and exhaust emissions of an engine(Floch et al.,1998;Kim et al.,1999).Four key parameters control the flow field in an engine:the mean flow components,the stability of the mean flow,the tem-poral turbulence evolution during the intake and compression strokes,and the mean velocity near the spark gap at the time of ignit…  相似文献   

12.
本文对汽油机瞬态工况燃烧特性的研究意义和研究现状进行了概述,介绍了进行瞬态燃烧研究的实验方案,提出了一种研究内燃机瞬态信号的方法——符号时间序列方法。  相似文献   

13.
燃烧热测定过程中氧弹内极限温度和极限压力的预测   总被引:2,自引:0,他引:2  
利用平均热容法和理想气体状态方程,预测了苯甲酸燃烧热测定过程中氧弹内的极限温度和极限压力。这些结果对安全地测定燃烧热具有指导意义。  相似文献   

14.
INTRODUCTIONWiththeworldfacingseriouspollutionofen vironmentandinevitabledecliningresourcesofenergy,thedevelopmentoflowerpollutionandlowerenergyconsumptionautomobilehasbe comeamajorresearchtarget.Thehighefficien cyandlowpollutionnaturalgas dieseldualfue…  相似文献   

15.
HeatTransferofanArayofRoundImpingingJetswithOneSidedExhaustoftheSpentAirSongYijun(宋益军)ChenYongyuan(程永元)CaiSong(蔡崧)(Thermoene...  相似文献   

16.
This paper presents a KIVA-3 code based numerical model for three-dimensional transient intake flow in the intake port-valve-cylinder system of internal combustion engine using body-fitted technique, which can be used in numerical study on internal combustion engine with vertical and inclined valves, and has higher calculation precision. A numerical simulation (on the intake process of a two-valve engine with a semi-sphere combustion chamber and a radial intake port) is provided for analysis of the velocity field and pressure field of different plane at different crank angles. The results revealed the formation of the tumble motion, the evolution of flow field parameters and the variation of tumble ratios as important information for the design of engine intake system.  相似文献   

17.
均质压燃(HCCI)能够使发动机同时保持较高的动力性能和燃油经济性,而且能有效降低发动机的NOx和PM排放,是一种克服传统的汽油机和柴油机缺点、集二者优点于一体的新的燃烧模式。由于其突出的优越性已成为目前世界范围发动机领域的研究热点,应用前景广阔,但由于HCCI的燃烧特点以及目前相关技术的约束,使其实用化进程仍存在不少问题。本文对HCCI燃烧方式和过程进行了介绍,详细分析了制约和影响HCCI燃烧方式的关键因素,针对HCCI的特点及其燃烧始点和燃烧过程控制的关键问题,提出了改变空气/燃料混合气特性的可变控制技术解决方案,为HCCI技术的实用化进程提供理论指导,为尽快实施HCCI燃烧方式指出了技术方向。  相似文献   

18.
随着社会的发展与进步,汽车日益普及,对汽油、柴油的消耗大幅增加,机动车尾气排放对环境及能源形势也产生了极大的影响。推进新能源、新技术的研究探索,具有十分重要的现实意义。文章对国内外在天然气/汽油两用燃料发动机方面的技术发展历程进行论述,并分析了天然气/汽油两用发动机的发展与应用趋势。  相似文献   

19.
INTRODUCTIONTheinternalcombustionengineisthemostwidelyusedpowermachineryinmodernsociety ,butisalsooneofthebiggestenvironmentalpol lutantsources.Tomeetmoreandmorestringentemissionrequirements,manyadvancedtech niques,suchastheleanburntechnique ,multi valvet…  相似文献   

20.
INTRODUCTION The use of dimethyl ether (DME) as an alterna-tive fuel appears to be a promising approach for si-multaneously minimizing NOx and soot emissionfrom conventional diesel engines. The lowself-ignition temperature of 508 K and the high oxy-gen content of 34.8 percent (mass fraction) are twomajor factors characterizing low soot and unburnedtotal hydrocarbon (THC) emissions. Since the firstintroduction of the concept by Sorenson and Mik-kelsen (19…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号