首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
首先让我们来看一道例题:例:解分式方程2x 1 x-31=x26-1①.解:方程两边都乘以(x 1)(x-1),得2(x-1) 3(x 1)=6.解这个整式方程,得x=1.检验:当x=1时,(x 1)(x-1)=0,∴x=1是增根,故原分式方程无解.从解方程的过程可以看到:为解分式方程,需要在①的两边都乘以最简公分母(x 1)(x-1),达  相似文献   

2.
解可化为一元一次方程的分式方程时,常常出现这样或那样的错误,主要有以下几种情况.一、确定的公分母并非最简例1.解方程4x-3-x3=3-8x.错解:方程两边同乘以x(x-3)(3-x),去分母,得4x(3-x)-3(x-3)(3-x)=8x(x-3),整理,得x2-2x-3=0,分解化为(x 1)(x-3)=0,故x=-1或x=3.经检验,x=3是增根,原方程的根是x=-1.剖析:最终答案无错,但在去分母时,由于没有注意到分母x-3与3-x可以统一化为x-3,即有3-x=-(x-3),致使公分母比最简公分母多了一个因式(3-x),从而出现了增根,造成了不必要的麻烦;另一方面,如果确定的公分母不是最简的,那么在化为整式方程后往往会…  相似文献   

3.
1.去分母时漏乘项. 例1.解分式方程5-x/x-4+1/4-x=1 错解:两边同时乘以最简公分母(x-4)得:5-x-1 =1 即:x=3 检验:x=3时,x-4=3-4=-1≠0 所以:x=3是原方程的根. 错因分析:最简公分母是(x-4),方程的两边同时(x-4)时,右边的1漏乘了(x-4),所以是漏乘项导致错误.  相似文献   

4.
解分式方程的基本方法是在方程两边都乘以各分式的最简公分母,约分后化为整式方程而求解.但对于有些分式方程,若根据其结构特征,采用某些特殊的解法,可以使解题过程变得更简捷.下面我们来看几个具体的例子.一、移项合并法例1解方程6=x-x.x-6x-6解:移项,得x=x-6,即x=x-6.x-6x-6x-6因为x-6,所以x=1.≠0经检验,是原方程的根.x=12 x=x-2.x练习解方程x-2(答案:1)二、分子相等法例2解方程4=5.x 32x 3解:原方程可化为20=20,即5(x 3)4(2x 3)5(x 3)=4(2x 3).解得x=1.经检验,是原方程的根.x=1练习解方程2=3.x 12x 3(答案:-3)三、等式性质法例3解方程x-…  相似文献   

5.
1.忽视方程的同解 例1 解方程:(x-1)(x-2)=x-1. 错解:两边除以(x-1),得 x-2=1,x=3. 评注:忽视了方程的同解,方程两边除以(x-1)就可能导致丢根x=1.为此,把原式整理成(x-1)(x-2-1)=0. ∴x_1=1,x_2=3为所求. 例2 解方程:(x a)/(x-b) (x b)/(x-a)=2. 错解:两边同乘以(x-b)(x-a),有 (x a)(x-a) (x b)(x-b) =2(x-a)(x-b), 即2(x-a)x=(a b)~2. ∴当a b≠0时,x=(a b)/2.  相似文献   

6.
<正>八年级上学期(人教版)学习了解分式方程,常常会遇到下列情况.例1解分式方程1/(x-5)=10/(x2-25).(1)解在方程两边乘最简公分母(x-5)(x+5)得到整式方程,x+5=10,(2)解之得x=5.将x=5代入原方程检验,发现这时分母x-5和x2-25).(1)解在方程两边乘最简公分母(x-5)(x+5)得到整式方程,x+5=10,(2)解之得x=5.将x=5代入原方程检验,发现这时分母x-5和x2-25的值都为0,相应的分式无意义.因此,x=5虽是整式方程x+5=10的解,  相似文献   

7.
【例1】解方程:1-41-x=5x--4x【错解】方程两边都乘以x-4,得1 1=5-x解得x=3【剖析】上述解答错误的原因有两点:一是去分母时没有把单独的整式1作为一项,乘以公分母x-4;二是忘记了“解分式方程必须检验”的要求.【正解】方程两边都乘以公分母x-4,得x-4 1=5-x解得x=4检验:当x=4时  相似文献   

8.
解分式方程的基本思想是去分母转化为整式方程,常用的转化途径是在方程的两边都乘以最简公分母.对于某些问题,利用拆项方法,可使解分式方程的过程巧妙、简捷.例1.解方程xx-5=xx--62解:不难发现,xx-5=(x-x-5)5 5=1 x-55,x-2x-6=(x-x6-)6 4=1 x-46∴1 5x-5=1 x-46∴x-55=x-46∴5(x-6)=4(x-5)解之,得x=10经检验,x=10是已知方程的解.例2.解方程x-4x-5-xx--65=xx--87-xx--98解:已知方程化为(1 1x-5)-(1 x-16)=(1 x-18)-(1 x-19)∴1x-5-x-16=x-18-x-19∴-1x2-11x 30=x2-1-71x 72∴x2-11x 30=x2-17x 72解之,得x=7.经检验,x=7是已知方程的解.例3.解…  相似文献   

9.
(2001年临沂市中考数学试卷中第23题)九年义务教育三年制初级中学《代数》第二册第97页的例2:解方程解:方程的两边都乘以x-2,约去分母,得 1=x-1-3(x-2). 解这个整式方程,得 x=2. 检验:当x=2时.x-2=0,所以2是增根,原方程无解.  相似文献   

10.
解分式方程时,由于方程两边同时乘以的最简公分母未知是否为零,故所求出的解可能使分母为零,即为增根。据此可知,分式方程要有增根,未知数的取值必是使最简公分母为零。由此可判断有增根的分式方程其增根是多少,或在知道某一增根的条件下求出分式方程中其它字母的值。例1 若方程2x-1x-1=1+x-ax(x-1)在实数范围内无解,求a分析:此方程无解,有两种情况:其一是化为整式方程后整式方程无解;其二是整式方程的解是分式方程的增根。解:方程两边同时乘以x(x-1)化为整式方程得:x2-x+2-a=0(1)当△<0时方程无解即(-1)2-4×1×(2-a)<0解得a<74(2)当分式…  相似文献   

11.
例1解不等式x-2/5相似文献   

12.
分式方程转化为整式方程时,未知数的取值范围发生变化,有可能产生增根.因此,解分式方程必须验根,就八年级而言,分式方程有哪些验根方法呢?一、代入检验法.将解得的根代入原方程的左、右两边,若左、右相等,则此根为原方程根,否则,此根为原方程的增根.例1.解方程xx-5=xx--62解:方程两边同乘以(x-5)(x-6)得x(x-6)=(x-2)(x-5)解得:x=10检验:当x=10时,左边=xx-5=2右边=xx--26=2,左边=右边∴x=10是原方程的根.评注:此验根方法不仅能检验出原方程的增根,而且可以检验出所求得根是否正确.二、增根比较法.所谓增根即使分式的分母为零的数.因此,令方程…  相似文献   

13.
在熟练掌握一元一次方程解法的基础上,若能抓住方程特征,并根据不同特征得到巧解。一、巧用乘法例1解方程0.25x=2.分析:因0.25×4=1,故两边同乘以4要比两边除以0.25简便易求。解:两边同乘以4,得x=8.二、直接加减例2解方程191z+72=92z-75.分析:常规方法是先去分母,注意到191z-29z=z,-75-27=-1,直接移项加减更快。解:移项,得191z-92z=-75-72,∴z=-1.三、巧对消例3解方程x-31[x-31(x-9)]=19(x-9).分析:从整体上观察方程两边,左边先去中括号有91(x-9)这一项,这可与右边的相同项对消。解:去中括号,得x-31x+91(x-9)=91(x-9),∴x-31x=0,故x=0.四、…  相似文献   

14.
分式方程通常用去分母法转化为整式方程来解。解由分式方程转化为整式方程时可能会产生不适合原方程的根,这种根叫做原方程的增根,下面谈谈分式方程的增根及其应用,供同学们参考。一、增根产生的原因增根是怎么产生的呢?简单地说,就是在将分式方程转化为整式方程时,由于方程两边都需乘以最简公分母,这样往往会扩大未知数的取值范围,从而可能产生增根,如在方程1x-2=1-x2-x-3中,未知数x的取值范围是x≠2。解此方程时,需在其两边都乘以(x-2)将它化为整式方程1=x-1-3(x-2),解此方程,得x=2。因x=2不在原方程未知数的取值范围内,故它是原方程的增…  相似文献   

15.
<正>笔者所在学校九年级的一次摸底考试中,有一道数学题引发争议,笔者谈谈自己的认识,供大家参考.题目当m为何值时,方程2/x-2+mx/x2-4=0会产生增根?对于上述问题,有些学生是这样解答的:分式方程两边同时乘以x2-4=0会产生增根?对于上述问题,有些学生是这样解答的:分式方程两边同时乘以x2-4,得2(x+2)+mx=0,整理得(2+m)x=-4.(1)由于最简公分母为(x+2)(x-2),故原  相似文献   

16.
某出版社的义务教育标准实验教科书《数学》(七年级下册)“分式方程”一节中的例1如下:例1 解分式方程(x+3)/(2x-4)=3/4.解:方程两边同乘4(2x-4),得4(x+3)=3(2x-4).去括号,得4x+12=6x-12.移项,合并同类项,得2x=24.∴x=12.把 x=12代入原方程检验,  相似文献   

17.
怎样才能正确而迅速地解一元一次 不等式?现结合实例介绍一些技巧,供同 学们参考. 一、巧用乘法 例1解不等式0.25x>10.5. 分析 因为0.25×4=1, 所以两边同乘以4要比两边 同除以0.25来得简便. 解两边同乘以4,得 x>42. 二、巧用对消法 例2 解不等式2x/3-(x-3)/5>16+(6-2x)/10. 分析 因为(6-2x)/10=-(x-3)/5,所以两边  相似文献   

18.
i︼z 一例1解方程sx一4Zx一4Zx+53x一6 错解方程两边都乘以6(x一2),得 3(sx一4)=2(Zx+5)一3(x一2). 解这个方程,得x一2. 所以,原方程的根是2. 剖析这道题求出解以后未检验.这是初学解分式方程经常出现的错误.正确的解法是求出x~2后进行检验.经检验,发现当x一2时,Zx一4一0.所以2是原方程的增根.原方程无解. 由此可见,检验对于解分式方程是何等的重要!例2解方程-生下+一2二一-.-,·,,-一x一5’x一9错解原方程两边通分,得 Zx一14 1 .1一一一一一下寸~-----甲二文—O止之:—匕Zx一14xZ一14x+45xZ一14x+48‘两边同除以Zx一14,得 1xZ一14x十4…  相似文献   

19.
分式方程是中学数学中的重要内容 ,解分式方程的基本思路是化分式方程为整式方程 ,其解法步骤是 :(1 )方程两边都乘以最简公分母 ,化分式方程为整式方程 ;(2 )解这个整式方程 ;(3)验根。以下是解分式方程中学生常出现的错误。(一 )最简公分母找不对例 :解方程 :1x2 - 7x 1 2 2x2 - 4 x 3=35x- x2 - 4 。分析 :解此题时如果还按照解分式方程的三步来 ,第一步找最简公分母在草纸上进行 ,由于有些同学平时写字潦草或在草纸上书写不规范 ,使得由于粗心导致错误 ,反过来检查又找不见原来写在哪里。为了防止这种错误做法 ,应在原有三步前再加一步…  相似文献   

20.
<正>这里的"特定解"是指分式方程解的四种特殊情况,求"特定解"的分式方程中未知常数,应做到具体问题具体分析.现举例说明:1.无解型例1已知关于x的方程x/(x-5)=3+a/(5-x)无解,求a.分析分式方程的"无解"有两种情形:其一,分式方程化成的整式方程无解;其二,分式方程化成的整式方程虽有解,而此解使最简公分母的值为0,此时,分式方程也无解.解方程两边同乘(x-5),得  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号